首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   10篇
  国内免费   22篇
安全科学   7篇
环保管理   4篇
综合类   48篇
基础理论   44篇
污染及防治   2篇
评价与监测   2篇
灾害及防治   1篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1996年   6篇
  1995年   10篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
排序方式: 共有108条查询结果,搜索用时 218 毫秒
11.
14C-甲磺隆在土壤中的可提态残留、结合态残留和矿化   总被引:1,自引:0,他引:1  
在实验室培养条件下,从质量平衡角度,研究了14C-甲磺隆在7种土壤中形成结合残留(14C-BR)、可提态残留(14C-ER)以及矿化为14CO2的规律;同时对14C-BR的主要影响因子及其在腐殖质中的分布规律进行了研究.结果表明:①14C-甲磺隆在土壤中形成的14C-ER,其含量与土壤pH呈显著正相关.甲磺隆母体化合物在7种土壤中 的半减期为13.3~66.6d,降解速率常数λ(d-1)与pH呈显著负相关.②14C-甲磺隆在7种土壤中形成的14C-BR,其含量在培养初期的20d内,与土壤pH呈显著负相关且与土壤粘粒含量呈显著正相关;而培养20d后,14C-BR的含量只与土壤pH呈显著负相关.pH是04C-甲磺隆在土壤中形成BR的主要影响因子.14C-甲磺隆在7种土壤中的14C-BR的最大值约为引入量的19.3%~52.6%.③在整个培养试验过程中,7种土壤中的14C-BR主要分布在富啡酸和胡敏素中,但其分布在胡敏酸中的相对百分比较小.因此,在14C-甲磺隆形成BR的过程中,富啡酸的作用>胡敏素>胡敏酸.④在整个培养试验期间(180d),14C-甲磺隆在7种土壤中通过三嗪杂环开环矿化为14CO2的量约占引入量的12.9%~27.0%,其在碱性土壤中更难被矿化为14CO2.  相似文献   
12.
单嘧磺隆在小麦田中的残留试验研究   总被引:2,自引:0,他引:2  
研究了单嘧磺隆的残留分析方法 ,单嘧磺隆在土壤中的消解动态和在土壤、小麦中的最终残留 .土壤经甲醇 /氨水混合液提取 (小麦用丙酮 /水混合液 ) .液液分配及C1 8小柱净化、用带紫外检测器的高效液相色谱仪测定 .单嘧磺隆的最低检出量为 4ng ,在土壤和小麦中的最低检出浓度为 0 0 2mg·kg- 1 .本方法的平均添加回收率为 91 1 7— 1 0 3 8% ,变异系数为 1 47— 1 1 8% .应用上述方法 ,测定了单嘧磺隆在北京、山东两地土壤中的消解动态以及在土壤、小麦中的最终残留 .结果表明 :在北京土壤中的半衰期为 9 2 4d ;在山东土壤中的半衰期为 1 3 5 9d;当按推荐剂量施药 ,小麦收获时 ,在土壤和小麦中 ,北京、山东两地均未检出单嘧磺隆  相似文献   
13.
氯吡脲,可促进细胞增大和分化,能防止落花落果,常作为植物生长调节剂应用于葡萄的种植过程中.氯吡脲对人体、牲畜等具有一定的毒性,对眼睛和皮肤具有轻度刺激.噻唑隆也是一种常用于葡萄中的植物生长调节剂,可促进植物芽的分化,而残留于植物中的噻唑隆对人畜具有低毒作用,可对眼睛产生轻微的刺激.很多国家对于氯吡脲和噻唑隆在农业生产中的限量都制定了严格的残留限量标准,如我国国家标准GB 2763—2014中规定了氯吡脲和噻唑隆在葡萄中的最大残留限量都为0.05 mg·kg-1.国内外关于氯吡脲和噻唑隆残留的检测方法主要包括液相色谱和液相色谱-质谱联用等.  相似文献   
14.
噻吩磺隆降解菌FLX的分离鉴定及降解特性   总被引:2,自引:0,他引:2  
从生产噻吩磺隆的农药厂内土壤中采取土样,经驯化富集后筛选到1株能高效降解噻吩磺隆的细菌FLX,根据表型特征、生理生化特性及16SrDNA分析,鉴定FLX初步为寡养单胞菌(Stenotrophomonas sp.).FLX能在含50mg/L噻吩磺隆的基础盐液体培养基中降解噻吩磺隆,48h降解率达83.34%.FLX降解噻吩磺隆的最适pH值为7.0,最适温度为35℃,在所试的金属离子中,Zn2+、Al3+、Cu2+、Ba2+、Fe3+等对FLX的降解影响较小;Hg2+,Co2+则抑制FLX的生长与降解.酶的定域实验表明,该菌中噻吩磺隆水解酶为胞内酶.  相似文献   
15.
利谷隆在土壤中的吸附过程与机理   总被引:10,自引:0,他引:10  
利谷隆是一种广泛应用的除草剂。本文研究了它在4种不同理化特性土壤中的吸附过程(平衡吸附所需的时间,土壤pH的影响及吸附等温线)和在单离子饱和粘土矿物上的吸附机理,结果表明:利谷隆在土壤的吸附强度大(Kt值在3.88-93.84);达到吸附平衡的短(5h);pH值降低,有利于吸附,pH在4-6范围内变化较明显;另外,利谷隆在土壤中形成氢键、配位键及离子键是可能的。  相似文献   
16.
利用高效液相色谱法(HPLC)测定水、土壤和植物中除草剂异丙隆的残留量.采用LC-18固相萃取小柱分离、净化和富集水中异丙隆残留;利用丙酮/水(体积比为3:1)振荡提取土壤中的异丙隆残留,并通过硅胶柱层析净化、分离;以乙酸乙酯为提取剂,采用超声波提取植物样品中的异丙隆残留,并用Florisil固相萃取小柱净化、分离.利用HPLC-UVD(Ultraviolet Detector,紫外检测器)定性、定量测定水、土壤和植物样品中异丙隆残留量.结果表明,异丙隆HPLC的线性检测范围为0.1~16 mg/L,决定系数\%R2\%=0.999 9,最低检测浓度为0.012 mg/L.水的加标回收率为90.7%~91.1%,相对标准偏差为3.0%~12.0%;土壤的加标回收率为88.4%~97.4%,相对标准偏差为6.9%~9.8%;植物的加标回收率为94.4%~99.9%,相对标准偏差为4.6%~9.0%.研究为异丙隆残留的检测提供了一种有效方法.  相似文献   
17.
粉尘是大气气溶胶的主要成分之一,对大气能量平衡起着关键作用。一般来讲,黄土高原(LP)粉尘主要来源于北方沙漠区,但有关中国东部及其周边地区粉尘来源的争论仍在继续。为此,本文对比分析了亚洲主要粉尘源区如中亚(CA)和中蒙(CM)粉尘循环对青藏高原阶段性隆升的响应,探讨了CA和CM粉尘排放对下游的贡献。利用美国大气研究中心(NCAR)最新发布的通用地球系统模式(CESM 1.0),进行了改变青藏高原海拔高度为现在10%,20%,30%?…100%的9个数值试验。分析结果表明,随着青藏高原阶段性隆升中亚和中蒙干旱区冬季降水均线性减弱,与前人研究结果一致。青藏高原阶段性隆升阻塞西风环流使其减弱从而引起中亚粉尘释放减弱;而青藏高原阶段性隆升引起亚洲冬季风加强,促使中蒙粉尘释放加强,与中亚相反。模拟结果与地质记录对比进一步证实了中蒙粉尘源区对黄土高原、中国东部及临近区域粉尘沉降的贡献。  相似文献   
18.
三种磺酰脲类除草剂在土壤中的降解及吸附特性   总被引:2,自引:1,他引:2  
采用室内模拟试验方法,研究了氟胺磺隆、氯吡嘧磺隆和磺酰磺隆3种磺酰脲类除草剂在5种不同种类土壤(江西红壤、太湖水稻土、东北黑土、南京黄棕壤、陕西潮土)中的降解及吸附特性.结果表明,这3种磺酰脲类除草剂在这5种不同土壤中的降解速率均比较快,且降解过程均遵循一级动力学方程,土壤pH值是影响土壤降解速率的主要因素.3种磺酰脲类除草剂在土壤中的吸附均符合Frendlich模型,且具有较低的吸附容量.3种磺酰脲类除草剂在不同土壤中的吸附自由能变化均小于40kJ.mol-1,吸附主要以物理吸附为主,吸附常数随土壤pH值的增大而逐渐减小.  相似文献   
19.
异丙隆降解菌Y57的分离鉴定及其降解特性   总被引:3,自引:0,他引:3       下载免费PDF全文
从农药厂的活性污泥中分离出1株能高效降解异丙隆的细菌Y57,通过生理生化鉴定和16SrDNA同源性序列分析,鉴定为鞘氨醇单胞菌属(Sphingomonassp.).接种量为1%的Y57可以在48h之内将30mg/L的异丙隆完全降解,降解率达到99%以上,降解最适pH值为7.0,降解效率与接种量呈正相关,在通气良好状况下降解速率较高.1mmol/L的Li+、Ca2+、Mg2+可以提高Y57降解异丙隆速率;1mmol/L的Ni2+、Zn2+对降解有明显的抑制作用;1000mg/L的酵母粉、葡萄糖、牛肉膏或蛋白胨对降解具有抑制作用.降解谱实验表明,Y57还可以降解绿麦隆、敌草隆、敌稗等除草剂.  相似文献   
20.
为探究草坪除草剂与重金属复合污染对高等植物的生态毒性效应,以小麦与黄瓜为敏感受试植物,采用滤纸发芽试验法,研究了典型草坪除草剂环草隆与4种重金属(Cu/Zn/Pb/Cd)单一及复合污染条件下,对2种植物种子萌发与幼苗生长的毒性效应并进行评估。在此基础上采用评估因子法外推环草隆在土壤中的预测无效应浓度(PNECsoil)。结果表明,2种植物的根长及小麦的芽长对环草隆与重金属非常敏感(P<0.01),且存在明显的剂量-效应关系。黄瓜根长对环草隆最敏感,根长半抑制浓度(RI50)为0.281 mg·L-1。小麦根长对Cu、Pb、Cd比黄瓜根长更敏感。环草隆与重金属复合污染时,黄瓜根长表现得最为敏感,可作为敏感生物标记物。环草隆与重金属复合污染对小麦及黄瓜根长抑制具有协同作用,并且随着重金属浓度的增大,黄瓜和小麦根生长对环草隆的敏感性增加。环草隆与重金属复合污染对小麦芽长的联合效应主要与重金属种类及其暴露浓度有关。以黄瓜的根伸长抑制率为急性毒性终点,利用外推法计算得环草隆在土壤中的PNECsoil为1.90μg·kg~(-1),远远低于环草隆田间推荐使用量1.5~9 mg·kg~(-1)。与重金属复合污染时,环草隆的PNECsoil明显降低,导致其生态风险提高。上述研究结果能够为草坪除草剂环草隆与重金属复合污染的生态风险评价提供数据支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号