首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   752篇
  免费   89篇
  国内免费   219篇
安全科学   133篇
废物处理   54篇
环保管理   49篇
综合类   560篇
基础理论   24篇
污染及防治   212篇
评价与监测   7篇
社会与环境   3篇
灾害及防治   18篇
  2024年   7篇
  2023年   15篇
  2022年   32篇
  2021年   45篇
  2020年   33篇
  2019年   38篇
  2018年   20篇
  2017年   34篇
  2016年   28篇
  2015年   37篇
  2014年   68篇
  2013年   55篇
  2012年   57篇
  2011年   43篇
  2010年   51篇
  2009年   54篇
  2008年   49篇
  2007年   51篇
  2006年   58篇
  2005年   41篇
  2004年   35篇
  2003年   38篇
  2002年   38篇
  2001年   30篇
  2000年   15篇
  1999年   18篇
  1998年   16篇
  1997年   13篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   2篇
  1989年   2篇
排序方式: 共有1060条查询结果,搜索用时 296 毫秒
421.
应用悬浮填料预处理微污染原水的影响因素探讨   总被引:10,自引:0,他引:10  
对采用悬浮填料的生物接触氧化原水预处理技术的影响因素进行了探讨。分析了自然挂膜条件下的工艺启动过程,研究了停留时间、气水比、温度、浊度条件对污染物去除效果的影响。通过夏、秋、冬季的中试运行效果表明:停留时间为60min,生物预处理装置对污染物的去除具有较好的效果;温度低于8.5℃,对氨氮去除效果影响较大;浊度对本工艺运行影响不大;气水比为0.375,足够满足生物预处理的运行。  相似文献   
422.
生物膜液相催化氧化烟气脱硫实验研究   总被引:2,自引:1,他引:2  
用氧化亚铁硫杆菌在生物膜填料塔进行液相催化氧化脱硫是一种新型的经济有效的方法.脱硫效率受多种因素影响.本文分别研究了SO2入口质量浓度、喷淋液Fe2 浓度、喷淋率、空塔气速及喷淋液循环使用对脱硫效率的影响.结果表明,在最佳操作条件(SO2入口质量浓度小于2 000 mg/m3、喷淋液中Fe2 浓度≥0.06 mol/L、喷淋率约为12 L/m3h,空塔气速约为0.15 m/s)下,脱硫效率可达96%以上.还分析了在反应器中培养基连续循环使用对脱硫效果的影响.在本实验条件下,当喷淋液循环使用7次后,必须补充新鲜营养液,以保证较高的脱硫效率.  相似文献   
423.
纳米TiO2光催化-SBR工艺处理印染废水的研究   总被引:2,自引:0,他引:2  
徐高田  校华  曾旭  徐静 《环境科学学报》2007,27(9):1444-1450
采用纳米"TiO2光催化-SBR"联合工艺对印染废水进行处理.实验所用装置为自行设计的"TiO2光催化-SBR"装置,利用偶联剂法将纳米TiO2附着于聚丙烯多面小球表面作为催化剂.光催化降解阶段以催化剂使用量、pH值和溶解氧(DO)为因素进行正交实验,最佳处理工况为1000个催化剂填料、pH值为8.0、溶解氧浓度为4.0mg·L-1;在SBR处理阶段主要考察反应器曝气时间以及沉淀时间对处理效果的影响,其最佳曝气时间和沉淀时间分别为2.5h、1h.实验结果表明,最终出水的色度、CODCr和BOD5去除率分别为90%、85%和94%.  相似文献   
424.
为提高污水厂尾水水质,本研究采用新型缓释碳源复配海绵铁、活性炭作为反硝化生物滤池的复合填料,分别以模拟二级处理出水和实际污水厂尾水为进水,考察了复合缓释碳源填料反硝化生物滤池-臭氧-活性炭(DNBF-O_3-GAC)组合工艺同步脱氮除磷及去除微生物代谢产物的性能,并借助Mi Seq高通量测序技术分析了反硝化生物滤池生物膜中的微生物群落结构特征.结果表明,组合工艺取得了较好的脱氮除磷及微生物代谢产物的效果:模拟配水阶段和实际尾水阶段NO_3~--N平均去除率分别达到88.87%、79.99%;TP平均去除率分别达到87.67%、65.51%;UV254平均去除率分别达到45.51%、49.23%.组合工艺各处理单元具有不同的功能:NO_3~--N、TN、TP、TFe的变化主要发生在反硝化生物滤池反应器中;UV254、三维荧光强度的变化主要发生在臭氧-活性炭反应器中.微生物在属水平进行聚类分析结果表明,反硝化脱氮系统存在硫自养反硝化菌和异养反硝化菌,当实际尾水阶段碳源相对不足时,硫自养反硝化作用有了显著加强,Thiobacillus(硫杆菌属)的占比由7.44%上升至29.62%,硫自养反硝化与异养反硝化形成的这种互补作用延长了新型缓释碳源的使用周期.  相似文献   
425.
在11~14℃低温下,采用A~2/O-BAF系统处理低C/N生活污水,研究了污染物去除特性、反硝化除磷过程中除磷脱氮比例(ΔPO_4~(3-)/ΔNO_3~--N)以及BAF中曝气量和有效填料高度对硝化反应的影响.结果表明,在COD、NH_4~+-N、TN和PO_4~(3-)的平均进水浓度分别为193.1、58.6、60.3和5.1 mg·L~(-1)时,平均出水浓度分别为46.3、2.5、13.4和0.3 mg·L~(-1),达到国家城镇污水处理厂污染物排放标准一级A标准.对ΔPO_4~(3-)/ΔNO_3~--N进行线性拟合,比值分布在0.47~1.75之间;运用正态分布对ΔPO_4~(3-)/ΔNO_3~--N进行数理统计,其均值为1.20,标准差0.29.BAF中曝气量为60 L·h~(-1)和100 L·h~(-1),出水NH_4~+-N浓度小于5.0 mg·L~(-1)时所需填料高度分别为1.8 m和1.0 m;继续增大BAF中曝气量为120 L·h~(-1)时,气水流冲击导致生物膜脱落,造成出水NH_4~+-N大于5.0 mg·L~(-1).  相似文献   
426.
利用微生物固定化载体强化人工快速渗滤系统,研究在常温下该系统对小单元、低浓度生活污水的处理效果。研究表明:在水力负荷30 cm/d的工况下,固定化填料人工快速渗滤系统对有机物具有良好的去除效果,对COD的去除率可达80%,基本出水COD〈50mg/l;该系统对TN的去除率约为30%;对TP的去除率为27.9-59.7%,并随系统运行时间的延长而下降。  相似文献   
427.
目前组合生物技术治理黑臭水体存在效率低、周期长、易复发等问题,进一步提高组合生物技术对黑臭水体净化效率成为亟待解决的问题。通过单因素及正交实验分析比较了不同促生剂、曝气方式、填料、植物对黑臭水体的净化效率,并通过高通量测序从微生物角度理解不同条件净化效率产生差异的原因。结果表明:不同条件对黑臭水体净化效率存在差异,其中净化效果较佳的为生物促生剂(BE)、持续曝气、弹性立体填料及水花生,且各实验组优势菌门、优势菌属及其相对丰度不同。说明微生物群落结构组成的差异是不同条件对黑臭水体净化效率产生差异的原因。持续曝气,刺激了好氧菌与兼性菌的大量生长;弹性立体填料表面生长的生物膜,为好氧菌、厌氧菌、兼性菌尤其是后两者的生长提供了必需条件,刺激了厌氧菌、兼性菌的大量生长繁殖;水花生也有其独特的有利于污染物净化的根际微生物群落结构。研究结果可为组合生物技术选取高效的条件参数提供参考,为强化组合生物技术高效净化黑臭水体提供理论依据。  相似文献   
428.
人工筛选菌脱除H2S恶臭气体的实验研究   总被引:17,自引:1,他引:17       下载免费PDF全文
利用人工筛选菌对H2S进行脱臭的试验研究.结果表明,将黄单胞菌H10与排硫硫杆菌A4接种至填料塔中,当控制出气中不能检测到H2S的存在时,H2S最大允许进气浓度达1300mg/m3,H2S的最大容积负荷为3.235gH2S/(L填料@d).这表明系统具有较高的H2S去除能力.通过人工筛选适宜微生物进行H2S脱臭具有很好的应用前景.  相似文献   
429.
研究了改性填料与普通填料在清水中的氧传质性能。根据反应器特征,建立了全混式反应器氧传质模型。分别测定了改性填料和普通填料在清水中连续曝气供氧的溶解氧值与曝气时间的关系。同一曝气流量下,改性填料反应器中清水的DO比普通填料反应器高;增大曝气流量,同一曝气时间反应器中清水的DO升高,直至饱和值Csat,并且前者比后者提前接近饱和值。采用全混式反应器氧传质模型,通过matlabprograms寻优求出连续曝气供氧时两种填料在清水中氧的液相总传递系数kLa。计算结果表明:曝气流量增大,氧传递系数kLa增大,其值约为22h-1~36h-1;在相同曝气流量下,改性填料的kLa均高于普通填料,约提高10%。试验表明改性填料增强了反应器的氧传递能力。  相似文献   
430.
研究了生物填料反应器(简称PBR)用于二级处理出水深度处理时,对COD,SS,NH3-N的去除效果及影响因素。并推荐废水再用流程为:二级处理出水→上向流PBR→双层滤料滤池→出水再用。推荐流程可有效地去除二级处理出水中的COD,SS,NH3-N,去除率分别为42.5%,92.3%.52.6%。推荐流程出水可再用于生产,生活杂用,循环冷却水补充等用水场合。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号