首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1473篇
  免费   175篇
  国内免费   485篇
安全科学   260篇
废物处理   119篇
环保管理   91篇
综合类   1017篇
基础理论   190篇
污染及防治   279篇
评价与监测   32篇
社会与环境   1篇
灾害及防治   144篇
  2024年   12篇
  2023年   56篇
  2022年   63篇
  2021年   75篇
  2020年   51篇
  2019年   72篇
  2018年   51篇
  2017年   35篇
  2016年   54篇
  2015年   67篇
  2014年   114篇
  2013年   89篇
  2012年   103篇
  2011年   104篇
  2010年   78篇
  2009年   97篇
  2008年   114篇
  2007年   132篇
  2006年   113篇
  2005年   123篇
  2004年   99篇
  2003年   84篇
  2002年   50篇
  2001年   45篇
  2000年   37篇
  1999年   44篇
  1998年   36篇
  1997年   25篇
  1996年   29篇
  1995年   27篇
  1994年   11篇
  1993年   15篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
排序方式: 共有2133条查询结果,搜索用时 31 毫秒
761.
为研究贵阳市大气臭氧的光化学生成特征,于2016年选取大气臭氧浓度较高的时段,在城区和郊区环境空气质量监测点对贵阳非甲烷烃类的环境浓度进行了观测.并利用基于观测的光化学模型分析了贵阳近地面大气臭氧生成的典型光化学过程和敏感性.通过在臭氧浓度较高时段,对比分析城区和郊区臭氧和臭氧前体物、模拟的主要自由基和光化学链反应终止产物的变化特征,发现贵阳城区与郊区的臭氧生成特征不同.通过分析臭氧主要前体物的相对增量反应活性,进一步发现城区臭氧生成主要受VOCs控制,郊区主要受NOx控制.控制人为源的烯烃和芳香烃对于控制城区臭氧污染最为有效.  相似文献   
762.
碱木质素作为重要的工业木质素来源,通过水热液化技术可以保留其中芳环结构,用于制备生物燃料中芳烃组分。在反应过程中,温度对生物油产率和组分影响较大。重点研究了在Mo/Al2O3催化碱木质素水热液化制备生物油过程中,反应温度对油产率和芳烃产率影响。研究结果表明,随着温度升高,生物油产率先增加后减少,在280℃时获得最高生物油产率。生物油的O/C比随温度升高持续下降,最低可达0.22,同时H/C比则持续增加,最高可达1.14。此外,高位热值也持续增加,最大值可达30.41 MJ/kg,温度的升高促进了生物油燃料特性的提升。然而,温度的升高对生物油中芳烃的富集不利,温度越高,生物油中芳烃的相对含量越低,而酚类化合物的含量越高。在260℃和添加质量分数15%的Mo/Al2O3催化剂条件下,芳烃的相对含量达到最大值34.1%,此时芳烃产物中对甲苯的选择性高达97.7%,芳烃产物富集效果最好。  相似文献   
763.
稻草原理是说将一根稻草放到一匹强健的骏马身上,骏马毫无反应,又放一根,骏马还是没有反应,再放一根,骏马依然没有反应,继续放下去,当稻草累积到一定程度,此时哪怕再放一根稻草,强健的骏马也会不堪重负,轰然倒地.  相似文献   
764.
《环境化学》2021,(3):F0002-F0002
大气有机胺是重要的碱性挥发性有机物,是促进大气新粒子形成与生长的重要前驱体。然而,目前由于有机胺在硫酸气溶胶表面非均相反应机理的不确定性,严重制约了如何采用大气模型正确评估有机胺对大气细颗粒物生长的贡献.  相似文献   
765.
湖泊富营养化与有机污染物的交互作用是当前国内外研究热点,为了建立富营养化湖泊中多环芳烃(PAHs)生态效应与底栖藻类群落之间的相关关系。本研究以白洋淀为研究区,选取8个国控样点作为采样点,依据人为干扰程度不同将8个采样点划分为3种生境:生境1(S1和S2)主要遭受上游府河废水排放影响;生境2(S3、S6和S8)主要遭受水产养殖和生活污水的影响;生境3(S4、S5和S7)遭受人为干扰较小。分别在2009年4月、8月和11月收集了底栖藻类样品,并测定了白洋淀中15种PAHs。运用RQ_((NC))和RQ_((MPC))等改进风险熵值(RQ)方法计算PAHs生态风险。研究结果表明:(1)底栖藻类群落指标AD、Chl a、Chl b/a、CHL、CYA、APA、GLU、LEU、PSC和AFDW的值在11月最高,其次是8月和4月;就空间分布而言,这些指标值在生境1中最高,其次是生境2和生境3;而Chl c/a和BAC值在8月最高,其次是11月和4月,从空间分布特征而言,这些指标值在生境3最高;(2)相关分析结果表明,Chl a、Chl b/a、CHL、CYA、APA、GLU、LEU、PSC和AFDW的指标与PAHs污染物浓度呈显著正相关,而Chl c/a和BAC指标与污染物PAHs浓度呈显著负相关;(3)就空间分异特征而言,生境1中的ΣPAHs浓度最高,就季节变化而言,PAHs的浓度从4月到8月逐渐增加,而从8月到11月逐渐下降。各类PAHs表现出与ΣPAHs相同的时空变化特征;(4)IBR与RQ_(ΣPAHs(NCs))呈正相关关系(r=0.827,P0.01);除RQAcy(NCs)外,其他种类PAHs生态风险均与IBR呈相正相关关系(r=0.699~0.899),其中RQ_(BaP(NCs))与IBR显著正相关(r=0.899,P0.01)。此外,除沉积物TP外,IBR与TSI、水中TN、水中TP和沉积物TN也呈显著正相关(r=0.722~0.862)。因此,在富营养化湖泊中应考虑运用底栖藻类IBR生态监测PAHs污染水平。  相似文献   
766.
《环境科学与技术》2021,44(1):190-197
文章在岳阳市一个国家空气质量监测站附近,采用罐采样方法采集一次O_3污染过程期间环境全空气样品,利用预浓缩-GC/FID/ECD/MSD技术分析106种VOCs,共检出77种VOCs,研究其组成与来源。结果表明:岳阳市秋季大气TVOCs体积分数为(44.91±15.52)×10~(-9),以烷烃(19.9%~53.0%)、含氧挥发性有机物(OVOCs)(15.7%~55.9%)为主,优势物种为C2~C5烷烯烃、OVOCs、苯系物及卤代烃。秋季VOCs丙烯等效浓度范围为60.46×10~(-9)~230.04×10~(-9);臭氧生成潜势范围为76.37~394.30μg/m~3;反应活性较高的物种为异戊烷、间/对-二甲苯和甲苯及丙烯、乙烯,根据反应活性物种初步判断岳阳市VOCs主要来源为机动车尾气排放及本地石油化工企业排放。特征比值溯源发现秋季异戊烷/正戊烷体积浓度比值为2.6,受机动车排放源影响更大。甲苯和苯、邻二甲苯和苯及间/对-二甲苯和苯体积浓度比值平均值分别为0.05、0.01和0.07,主要来源于生物质、生质燃料、煤燃烧源。邻二甲苯和乙苯、间/对-二甲苯和乙苯体积比值均值分别为0.80和2.71,受溶剂排放影响较大。控制岳阳市秋季O_3污染应着力于交通排放、LPG燃烧排放源、生物质燃烧源、石油化工及溶剂挥发排放的治理。  相似文献   
767.
崔皓  田禹  张军 《环境科学研究》2021,34(12):2820-2830
磺胺抗生素(SAs)作为最早应用的一类化学合成抗菌药,其大量使用和排放对水环境造成严重污染,引起了人们对于水环境安全的高度关注. 因此,选取了水环境中检出率较高的5种特征SAs作为目标污染物,分别为磺胺甲基嘧啶(SMR)、磺胺二甲基嘧啶(SMT)、磺胺甲恶唑(SMX)、磺胺异恶唑(SIX)和磺胺噻唑(STZ). 利用高效液相色谱质谱联用仪(HPLC-MS-MS)对降解过程产生的中间产物进行检测和分析,深入研究了间歇超声波(US)强化ZVI/PS体系(简称“US-ZVI/PS体系”)降解5种SAs的效能和反应路径. 结果表明:①在US强度、pH、ZVI(零价铁)浓度和PS初始浓度分别为0.25 W/cm3、6.0、0.6 mmol/L和1.4 mmol/L条件下,30 min反应时间内,US-ZVI/PS体系对5种SAs的降解效率均超过95%. ②US-ZVI/PS体系降解5种SAs的过程均符合拟一级反应动力学,5种SAs降解速率常数大小依次为SMR(0.223)> SMT(0.215)>STZ(0.203)>SIX(0.181)> SMX(0.119). ③5种SAs的降解活性位点为苯环上邻位的3号C原子、苯氨基上的7号N原子、磺酰胺基上的8号S原子和11号N原子,US-ZVI/PS体系降解5种SAs的相同反应路径包括S—N键断裂、C—N键断裂、苯环羟基化、苯胺氧化和R取代基氧化过程,与五元环SAs相比,六元环SAs反应路径多一个N—N重排过程. 研究显示,US-ZVI/PS体系能够实现不同结构SAs的快速降解,是一种绿色、高效的高级氧化技术.   相似文献   
768.
张帆  宋阳  胡春  吕来 《环境科学》2021,42(5):2360-2369
多相催化臭氧化技术因能有效去除水中有机污染物而受到广泛关注.然而,基于单一位点氧化还原的金属氧化物催化臭氧化过程存在速率限制步骤,使活性受到抑制,极大地限制了多相催化臭氧化技术的实际应用.为解决这一瓶颈,以过渡金属物种Fe和Ti对金属氧化物γ-Al2O3基底进行晶格掺杂制备出新型双反应中心催化剂FT-A-1 DRCs.通过XRD、TEM和XPS等技术对其形貌结构和化学组成进行了表征分析,证明Fe和Ti对于Al的晶格取代,形成表面贫富电子微区(富电子Fe微中心和缺电子Ti微中心).FT-A-1 DRCs被用于催化臭氧化过程,对布洛芬等一系列难降解有机污染物的去除表现出优异的活性和稳定性.利用EPR和电化学技术揭示了界面反应机制.发现在催化臭氧化过程中,O3/H2O在富电子微中心被定向还原产生·OH,而污染物可在缺电子微中心作为电子供体而被氧化,为反应体系持续提供电子.这一反应过程利用污染物自身的能量实现了污染物的双途径降解(·OH攻击和直接电子供体),突破了金属氧化物催化臭氧化过程存在速率限制步骤.  相似文献   
769.
770.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号