全文获取类型
收费全文 | 2156篇 |
免费 | 417篇 |
国内免费 | 1037篇 |
专业分类
安全科学 | 221篇 |
废物处理 | 92篇 |
环保管理 | 157篇 |
综合类 | 2160篇 |
基础理论 | 274篇 |
污染及防治 | 642篇 |
评价与监测 | 37篇 |
社会与环境 | 20篇 |
灾害及防治 | 7篇 |
出版年
2024年 | 62篇 |
2023年 | 103篇 |
2022年 | 131篇 |
2021年 | 135篇 |
2020年 | 113篇 |
2019年 | 108篇 |
2018年 | 90篇 |
2017年 | 112篇 |
2016年 | 132篇 |
2015年 | 155篇 |
2014年 | 195篇 |
2013年 | 151篇 |
2012年 | 139篇 |
2011年 | 171篇 |
2010年 | 154篇 |
2009年 | 166篇 |
2008年 | 169篇 |
2007年 | 163篇 |
2006年 | 181篇 |
2005年 | 155篇 |
2004年 | 129篇 |
2003年 | 113篇 |
2002年 | 78篇 |
2001年 | 68篇 |
2000年 | 56篇 |
1999年 | 73篇 |
1998年 | 48篇 |
1997年 | 59篇 |
1996年 | 38篇 |
1995年 | 38篇 |
1994年 | 38篇 |
1993年 | 25篇 |
1992年 | 16篇 |
1991年 | 17篇 |
1990年 | 11篇 |
1989年 | 14篇 |
1988年 | 2篇 |
1987年 | 2篇 |
排序方式: 共有3610条查询结果,搜索用时 0 毫秒
311.
在处理污水的潜流人工湿地中,湿地植物容易受到缺氧胁迫.尽管菖蒲(Acorus calamus L.)是一类对缺氧条件具有显著抵抗能力的湿地植物,但菖蒲的生理响应并不能完全消除湿地长期缺氧带来的胁迫.生物炭添加能够缓解菖蒲体内超氧化物和过氧化物的积累,显著降低膜脂过氧化程度,但生物炭对缓解缺氧胁迫的具体机制尚不清晰.因此,本研究通过在温室内构建5种不同的生物炭湿地,采用植物生态学分析方法,将植物根系通气组织、根孔隙度和根系泌氧相结合,研究菖蒲根部组织对生物炭添加的响应机制.结果表明,通过在传统潜流人工湿地中添加生物炭,有利于菖蒲形成根系通气组织,增大根孔隙度,生物炭投加量与根孔隙度具有显著正相关关系.在湿地中添加生物炭将利于O_2通过通气组织传输至地下部分,并以根系泌氧(radial oxygen loss,ROL)的形式扩散至根际,显著提高根系泌氧量.与其它光强相比,在3 000μmol·(m~2·s)~(-1)条件下,菖蒲泌氧能力较强,生物炭投加比例对植物ROL的影响不显著. 相似文献
312.
利用微生物的混合培养技术,研究了好氧条件下同时硝化-反硝化的生物脱氮过程.混合脱氮微生物菌群生长的适宜pH范围为7~10,在5 L发酵罐上探索了实现混合脱氮微生物菌群高密度培养的pH控制策略:发酵前期补酸控制pH≤8,发酵中后期不控制pH值,可缩短菌体的生长周期,提高菌体的氨氮降解速率,细胞质量浓度达3.9 g/L,比自然pH条件下提高了62.5%.并在10 L发酵罐上作进一步的培养,验证了其pH控制策略的可行性.通过分批补加(NH2)2SO4使菌浓进一步提高了15.4%,最终细胞干重为4.5 g/L. 相似文献
313.
314.
315.
316.
将驯化后的鲻鱼(Mugil cephalus)幼鱼分别放在盐度为20、15、10、5、0(表示为S20、S1 5、S1 0、S5、S0)的条件下饲养20 d,测定鲻鱼幼鱼在不同盐度下,不同时间段(0 d、5 d、10 d、15 d、20 d)其耗氧率、排氨率及O/N的变化情况。结果表明,在实验第5 d,鲻鱼幼鱼的耗氧率和排氨率均随盐度降低而减小,盐度0实验组最低。在实验第5 d~10 d,S0、S5、S10实验组排氨率变化显著(P0.05),而耗氧率则没有显著变化(P0.05)。在实验的第10d各盐度组之间的耗氧率已没有显著的差异性(P0.05),而排氨率则在实验的第20 d才没有显著的差异性(P0.05),表现出一定的滞后性。随着实验时间的延长,相同盐度下鲻鱼幼鱼耗氧率和排氨率均逐渐下降,鲻鱼幼鱼体重的变化可能是其主要影响因子。对鲻鱼幼鱼O/N分析表明,各盐度组的O/N比值维持在0~10的范围,表明此盐度范围蛋白质是鲻鱼幼鱼的主要能源物质。 相似文献
317.
318.
319.
依据准好氧填埋的原理构建了填埋试验装置.在准好氧填埋结构中,空气通过渗滤液收集主管道和竖直通风管道在垃圾层进行扩散,并在这些管道周围形成好氧区,在空气扩散不到的地方为厌氧区依据氧气浓度在垃圾层内的不同来决定它在垃圾层内的分布状态.并通过对单独的一根竖直通风管道进行氧气浓度插值分析,判断氧气通过竖直通风管道在垃圾层内的影响区域.结果表明,氧气的浓度分布顺序为上层>中层>下层.确立了本实验条件下准好氧填埋的好氧区域,通过二次曲面进行拟合,得到它的水平耗氧半径为7.3m,竖直耗氧半径为3.5m. 相似文献
320.
膜生物反应器处理印染废水技术研究 总被引:5,自引:1,他引:5
采用小试规模(148L/d)的厌氧-好氧膜生物反应器处理印染废水.当水力停留时间为14小时,进水COD、色度分别为208.54~2592.00mg/l、32~256倍,通过水解酸化-体式膜生物反应器试验,系统对COD、色度的去除率分别达到了80%~90%、87.5%.出水水质浓度或指标分别为21.80~363.20mg/l、8倍,具有良好的处理效果.厌氧-好氧膜生物反应器工艺处理印染废水技术可行、操作简单、易于管理、可为工业规模应用提供技术参考. 相似文献