首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1911篇
  免费   220篇
  国内免费   636篇
安全科学   107篇
废物处理   295篇
环保管理   182篇
综合类   1711篇
基础理论   161篇
污染及防治   275篇
评价与监测   30篇
社会与环境   4篇
灾害及防治   2篇
  2024年   71篇
  2023年   165篇
  2022年   211篇
  2021年   269篇
  2020年   199篇
  2019年   169篇
  2018年   92篇
  2017年   89篇
  2016年   96篇
  2015年   86篇
  2014年   137篇
  2013年   61篇
  2012年   73篇
  2011年   61篇
  2010年   64篇
  2009年   71篇
  2008年   75篇
  2007年   51篇
  2006年   55篇
  2005年   54篇
  2004年   63篇
  2003年   65篇
  2002年   64篇
  2001年   51篇
  2000年   36篇
  1999年   46篇
  1998年   48篇
  1997年   40篇
  1996年   42篇
  1995年   31篇
  1994年   28篇
  1993年   24篇
  1992年   24篇
  1991年   15篇
  1990年   30篇
  1989年   10篇
  1988年   1篇
排序方式: 共有2767条查询结果,搜索用时 831 毫秒
381.
生物炭及改性生物炭已被广泛应用于重金属污染农田土壤修复领域.为探寻经济有效的镉(Cd)污染酸性紫色土壤修复改良材料,将酒糟制成酒糟生物炭(DGBC),并用纳米二氧化钛(Nano-TiO2)对其改性,制得两种改性酒糟生物炭TiO2/DGBC和Fe-TiO2/DGBC,采用水稻盆栽试验研究不同生物炭和不同施用量(1%、3%、5%)处理对土壤理化性质、养分含量、Cd赋存形态与生物有效性、水稻生长与Cd富集的影响.结果表明:①施用DGBC显著提高了酸性紫色土pH、CEC和养分含量,且TiO2/DGBC和Fe-TiO2/DGBC效果更好.②DGBC和改性DGBC使土壤Cd形态由可溶态向难溶态转变,残渣态Cd相较对照增加了1.22%~18.46%.土壤Cd生物有效性显著降低,DGBC、TiO2/DGBC和Fe-TiO2/DGBC分别使有效态Cd降低11.81%~23.67%、7.64%~43.85%和19.75%~55.82%.③施用DGBC和改性DGBC提高了水稻产量,DGBC、TiO2/DGBC和Fe-TiO2/DGBC在3%添加量时水稻产量最高,分别为30.60、37.85和39.10 g·pot-1,是对照的1.13、1.40和1.44倍.水稻各部位Cd含量显著降低,施用3种生物炭时水稻籽粒ω(Cd)分别为0.24~0.30、0.16~0.26和0.14~0.24 mg·kg-1,TiO2/DGBC在5%、Fe-TiO2/DGBC在3%和5%添加量时,水稻籽粒ω(Cd)低于0.2 mg·kg-1,符合国家食品中污染物限量标准(GB 2762-2022).总体来看,Nano-TiO2改性DGBC通过自身的吸附作用和影响土壤Cd形态分布有效降低了土壤Cd生物有效性,从而降低了水稻对Cd的吸收,同时促进了水稻生长,提高水稻产量.是一种具有潜在应用前景的Cd污染土壤修复改良材料.研究结果可以为Cd污染酸性紫色土农田修复和农业安全生产提供科学依据.  相似文献   
382.
罗邦容 《四川环境》2005,24(6):17-19
本文通过试验,阐明了舍汞固废(危废)焙烧过程中汞的迁移情况,并得到了焙烧治理技术的最佳工艺参数为:焙烧温度600℃、焙烧时间5h、炉内压力-50Pa—100Pa;焙烧后固废中残留汞含量小于0.0015%;汞回收率达95%左右。  相似文献   
383.
磁性铁基改性生物炭去除水中氨氮   总被引:7,自引:6,他引:1  
氨氮的过度排放是水体富营养化的一个重要原因.然而,随着环境法规的日益严格,传统方法处理效果难以达到要求.吸附法因高效、安全等优点近年来开始应用于去除水中的氨氮.本研究中以共沉淀法将磁性铁基材料负载到市政污泥生物炭上,结果表明其对水中氨氮有良好的去除效果.80℃下合成的材料(MB80)在293 K下对氨氮的饱和吸附量可达17.52 mg·g-1.动力学与热力学结果表明,MB80吸附氨氮的过程更符合伪二级动力学和Langmuir等温线.MB80对氨氮的吸附机制可归纳为静电吸引、孔隙填充、离子交换和氢键结合.且5次循环后对氨氮的吸附量仍十分理想,可达3.18 mg·g-1.本研究的结果可以为高效去除水中氨氮提供一种行之有效的方法,并为市政污泥的处理提供新的出路.  相似文献   
384.
市政污泥热解过程中重金属迁移特性及环境效应评估   总被引:3,自引:3,他引:0  
姜媛媛  王彦  段文焱  左宁  陈芳媛 《环境科学》2021,42(6):2966-2974
以昆明某市政污泥为原料,研究生物炭制备过程中重金属Fe、Zn、Mn和Ni的迁移特性,并基于其潜在环境风险确定污泥基生物炭制备的最佳热解温度.本实验选择总量较高的4种重金属Fe、Zn、Mn和Ni,采用BCR提取法测定不同热解温度下4种重金属的形态和含量变化,得到各金属的形态分布变化规律和迁移路径,利用潜在生态风险指数(PERI)和风险评估代码(RAC)对污泥基生物炭进行环境风险评估.结果表明,4种金属的易挥发程度排序为Zn > Mn > Fe > Ni,4种金属形态分布情况和变化规律各不相同,但迁移路径具有共通性.在低温热解阶段,不稳定形态向稳定形态转化;随着温度的升高,可氧化态和残渣态逐步分解破碎,部分逸散到大气中,部分形成可还原态.在环境风险评估方面,高温条件(>500℃)下制备的生物炭环境风险较低,500℃制备的生物炭经济性最好.  相似文献   
385.
386.
387.
《环境科学与技术》2021,44(5):61-67
蓝藻水华严重影响水环境健康和用水安全,化学絮凝法能高效去除水中藻类。该文以铁盐和亚铁盐为混凝剂、磁性藻基炭(MAB)为助凝剂去除水中铜绿微囊藻,确定了铁盐的最优投配比和MAB的最佳投加量,探讨了MAB对铁盐去除水中铜绿微囊藻的助凝效果和机理。结果表明,铁盐最优Fe2+∶OH~-∶Fe~(3+)投配比例为2∶6∶0.3,投药量以[Fe~(2+)]计为1 mmol/L,MAB最佳投加量为30 mg/L。MAB提高了铁盐去除铜绿微囊藻及相关污染物的混凝效果,促进藻细胞与铁盐水解产物作用生成密实性更好的藻絮体沉淀物,并且具备良好磁响应性能的MAB有助于实现藻絮体的外磁场分离。水中藻细胞和MAB在混凝初期主要通过静电吸附的形式与铁盐水解产物Fex(OH)y作用,混凝中后期则主要通过无定形Fe(OH)_3的网捕卷扫作用得以沉淀去除。表征分析表明,混凝过程中铁盐水解产物与藻细胞表面活性官能团发生作用形成了新的表面基团,可推断Fex(OH)y及其高聚合体与铜绿微囊藻的胞外聚合物之间发生了共聚络合反应。  相似文献   
388.
水体中难降解有机物对人体和生态环境存在潜在威胁,开发高效、环保和低成本的催化体系对修复此类废水具有重要意义.生物炭基材料-过硫酸盐高级氧化体系在污水处理领域有广阔的应用前景,为了进一步明确生物炭基材料活化PMS(过一硫酸盐)降解有机污染物的性能及微观机制,综述了生物炭、(非)金属元素掺杂生物炭和金属氧化物-生物炭复合材料3种典型生物炭基材料活化PMS降解有机污染物的催化活性及界面反应机制.结果表明:生物炭基材料表面催化位点(如含氧官能团、缺陷、持久性自由基、金属原子等)可通过自由基或非自由基方式促进PMS活化,进而促进SO4-·(硫酸根自由基)、·OH(羟基自由基)和O2-·(超氧自由基)等活性物种的产生,最终增加相应体系的催化活性;使用(非)金属元素掺杂或者负载金属(氧化物)能够显著改变生物炭电荷分布和活性位点,进而增加生物炭基材料的催化活性.但目前的研究仍存在一些不足,如多种活性位点在生物炭基材料活化PMS过程中的协同作用机制尚不明确,杂原子共掺杂生物炭或生物炭负载单原子催化剂在PMS体系中的催化活性及机制、自由基/非自由基方式的协同作用机制也兹待研究.此外,污染物自身结构特性对生物炭基材料催化活性的影响机制也有待进一步探讨.   相似文献   
389.
将污泥生物炭作为载体培养好氧颗粒污泥,研究培养成熟的好氧颗粒污泥在碳氮比(C/N)由10降为4条件下的长期运行稳定性.结果表明,通过添加生物炭培养成熟的好氧颗粒污泥颗粒结构更紧密,不易解体.虽然丝状菌Thiothrix大量增殖,但是好氧颗粒沉淀性能良好,SVI30始终维持在50mL/g左右;系统COD去除效率达到90%以上,TN去除率为70%左右.高通量测序分析表明,加炭系统微生物多样性有所降低,但具有反硝化功能的细菌数量增加,提升了系统脱氮性能.添加污泥生物炭培养成熟的好氧颗粒污泥具有更好的脱氮性能和长期运行稳定性,有利于低C/N条件下的高氨氮废水处理.  相似文献   
390.
为了解人工合成药物在生物炭上的吸附动力学特征及其浓度效应的影响,选择卡马西平(CBZ)为目标污染物。探讨不同初始质量浓度(2、4、25、50 mg·L~(-1))在不同裂解温度(200、300、500℃)下制备的生物炭上的吸附动力学特征。结果表明,双室一级动力学模型可以精确地描述CBZ在生物炭上的吸附动力学特征。CBZ的快室吸附对总体吸附的贡献随初始浓度的增大而减小,而慢室吸附贡献则增大。π-π作用可能对CBZ的吸附贡献较大。孔隙填充可以描述慢室吸附过程,可能是吸附速率的控制环节。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号