首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1910篇
  免费   220篇
  国内免费   636篇
安全科学   107篇
废物处理   294篇
环保管理   182篇
综合类   1711篇
基础理论   161篇
污染及防治   275篇
评价与监测   30篇
社会与环境   4篇
灾害及防治   2篇
  2024年   71篇
  2023年   165篇
  2022年   211篇
  2021年   268篇
  2020年   199篇
  2019年   169篇
  2018年   92篇
  2017年   89篇
  2016年   96篇
  2015年   86篇
  2014年   137篇
  2013年   61篇
  2012年   73篇
  2011年   61篇
  2010年   64篇
  2009年   71篇
  2008年   75篇
  2007年   51篇
  2006年   55篇
  2005年   54篇
  2004年   63篇
  2003年   65篇
  2002年   64篇
  2001年   51篇
  2000年   36篇
  1999年   46篇
  1998年   48篇
  1997年   40篇
  1996年   42篇
  1995年   31篇
  1994年   28篇
  1993年   24篇
  1992年   24篇
  1991年   15篇
  1990年   30篇
  1989年   10篇
  1988年   1篇
排序方式: 共有2766条查询结果,搜索用时 890 毫秒
951.
采用"复合过滤法"处理生物质焦油废水,通过分析生物质焦油废水水质特点,筛选出滤料的种类、确定滤料的配置比,并经实验对比分析。结果表明,经复合过滤法处理后的焦油废水COD、焦油、SS的去除率分别达到54%、60%、68%。该技术工艺简单,运行成本低,管理方便,可广泛用于农村生物质气化站的焦油废水处理。  相似文献   
952.
核电站废离子交换树脂微波干燥可行性研究   总被引:1,自引:0,他引:1  
目前,核电站产生的废树脂,大多数采用暂存或水泥固化方法,但水泥固化增容比达4.8~5.2。桶内干燥工艺以其工艺简单,减容比大等优点,已在国外核电站得到应用。微波干燥具有由内向外的干燥特点。据报道,微波干燥废树脂的减容比可达5。用微波作为热源,在桶内干燥条件下对核电厂产生的废树脂开展了可行性研究。研究表明,在试验条件下,初始含水率50%左右的树脂,干燥后的含水率均小于10%,减容比为1.5~2。试验结果表明微波干燥废树脂是可行的。  相似文献   
953.
王哲  程俊丽  卞园  郑春丽  王维大  姜庆宏 《环境科学》2022,43(11):5205-5213
生物炭虽然已经广泛用于酸性和中性土壤重金属污染修复,然而当生物炭应用于碱性土壤中经历不同程度的老化后是否会改变其结构和固定重金属的能力却关注较少.因此,以玉米秸秆为原料制备生物炭,采用冻融和干湿这两种人工加速老化培养和一种短期自然老化方法对生物炭进行老化实验.老化后测定土壤的pH和Cd2+的有效态含量、总量和形态,并从土壤中分离生物炭进行表征,探讨老化作用对生物炭钝化矿区碱性土壤中Cd2+的影响.结果表明,白云鄂博矿区碱性土壤中添加生物炭处理不具有显著的石灰化效应,冻融和干湿加速老化处理中pH整体呈下降趋势.与对照相比,添加生物炭后Cd2+有效态含量降低了19.32%~30.67%,总Cd2+含量下降了5.02%~7.18%.老化作用未能显著改变Cd2+的形态,但降低了酸可提取态与可还原态的比例,说明生物炭即使经历老化,依然能够长期固定Cd2+,这与生物炭老化后含氧官能团和孔隙结构的增加有关.研究可为生物炭在矿区环境中的长期应用提供理论依据.  相似文献   
954.
955.
开展了不同温度条件(150~300℃)下大粒径(>2 cm)厨余垃圾水热碳化实验,研究了水热炭的理化性质、燃烧特性和关键元素迁移规律.实验结果表明,当水热温度过低,厨余垃圾颗粒尺寸影响水热碳化效果;大粒径厨余垃圾碳化需更高的水热温度;水热温度250~300℃产生的水热炭具有高热值(24.48~26.9 MJ·kg-1)、高燃料比(0.44~0.56)、高含碳量(59.6%~65.6%)和低含灰量(8.51%~4.35%)的特点.随着水热温度提高,水热炭中碳含量升高、灰含量下降;水热炭的着火温度、燃烬温度、挥发分释放特性指数VI、可燃性指数CI和综合燃烧特性指数CP均上升,提高了燃烧稳定性;同时水热炭中K、Na浓度降低,有利于降低水热炭燃烧结焦;N、S在水热炭中分布比例下降,这将减少水热炭燃烧的烟气污染物排放.因此,水热碳化能实现大粒径厨余垃圾的燃料化利用.  相似文献   
956.
了解生物炭溶解性有机质(BDOM)与污染物的络合机制对生物炭的应用具有重要意义.选取天然湿地植物灰化苔草为生物炭原料,利用荧光猝灭法及多种光谱分析技术和方法,分析了植物不同部位、不同热解温度下BDOM与氯霉素(CAP)的络合机制,以期为生物炭的生态修复提供理论支持.紫外-可见吸收光谱分析结果表明,BDOM与CAP的荧光猝灭属于静态猝灭,300 ℃制备的BDOM与CAP络合体系的芳香性化合物含量和分子量比500 ℃更大. 同步荧光光谱分析结果发现类络氨酸和类色氨酸物质与CAP的络合能力更强.二维相关图谱分析结果表明植物根与叶的BDOM分别以类蛋白和类腐殖物质对CAP的猝灭更强,其中苔草根BDOM与CAP的猝灭优先发生于类蛋白物质中,但苔草叶BDOM以类腐殖物质为先.此外,通过三维荧光光谱结合平行因子分析法共解析出1个类蛋白荧光组分和5个类腐殖质荧光组分.总体来说,就单一组分而言,BDOM类蛋白组分与CAP的络合强度高于类腐殖质组分.  相似文献   
957.
挥发性有机物(VOCs)是主要的臭氧前体物之一,控制VOCs排放是打赢“蓝天保卫战”的重要组成部分.研究工业源VOCs排放特征和对O3生成贡献对制定和修订相关VOCs排放标准、有针对性控制VOCs排放具有重要意义.炭素行业是非金属制品业的重要组成部分,属于高污染行业,对该行业有组织VOCs排放的研究鲜见文献报道.本文选取河南省某典型炭素企业Y炭素厂作为研究对象,通过实地采样分析了不同工序有组织和车间内、外无组织117种VOCs排放特征,计算臭氧生成潜势(OFP)并评估了不同VOCs类别和物种对O3生成的贡献.研究表明,Y炭素厂排放因子为0.031 g·kg-1,其中焙烧工序有组织VOCs排放量最大.总有组织排放占比较大的VOCs类别有烯烃(23.56%)、烷烃(21.24%)、芳香烃(18.17%)、卤代烃(15.34%)和含氧化合物(8.95%)等,占比较大的VOCs物种有乙烯(18.2%)、乙烷(11.5%)、苯(8.66%)和 乙炔(7.15%)等.车间内无组织排放占比较大的VOCs物种则为萘和四氯化碳等.总有组织排放的VOCs中,烯烃、芳香烃和含氧化合物的OFP占比较大,分别为71.72%、11.35%、10.05%,其中乙烯、丙烯的OFP占比分别为52.91%和13.98%,是需要重点治理的O3生成前体物.  相似文献   
958.
“无废城市”建设可以助推碳达峰、碳中和目标的实现。开展“无废城市”建设,对于在城市整体层面实现碳减排十分必要,且二者在目标和路径上具有协同性,应协同推进,推动减污降碳协同增效。然而,目前我国“无废城市”建设与碳减排协同推进存在融合度不足、固废资源化利用水平不高、固废处理处置排放偏高以及相关碳排放理论与方法不完善等问题,亟待深入研究。因此,本文基于我国“无废城市”建设的实际情况,分析“无废城市”建设与碳减排的关系和协同推进的问题,估算“无废城市”建设产生的碳减排效益和潜力,识别“无废城市”建设中碳减排的重点领域和关键环节,提出“无废城市”建设与碳减排协同推进的发展目标以及政策建议,为切实发挥减污降碳协同增效作用、推动我国生态文明建设提供支撑。  相似文献   
959.
以国三、国五柴油公交车为研究对象,在重型底盘测功机上运行中国典型城市公交循环,分析了国三、国五柴油公交车使用柴油、废食用油制生物柴油-柴油混合燃料(B10)的污染物排放及VOCs成分谱.结果表明:国五公交车的THC、CO、PM和固态PM2.5数量排放比国三公交车分别降低39.3%、19.9%、77.4%和28.4%,NO_x升高31.7%;国三、国五公交车排放的VOCs主要为烷烃、烯烃和含氧化合物,国五公交车的烷烃、烯烃、芳香烃、含氧化合物等VOCs排放较低,其VOCs大气反应活性降低,二次有机气溶胶的生成潜势较弱.与使用柴油比较,国三(国五)公交车使用B10的THC、CO、PM和固态PM2.5数量排放降低;国三公交车的NO_x排放增加,国五公交车的NOx排放降低;国三(国五)公交车使用B10的VOCs成分谱中含氧化合物降低,烯烃增加,VOCs大气反应活性增强.  相似文献   
960.
随着新固废法等国家法律的实施,固废管理违法成本显著提高,企业固体废物的环保安全管理压力不断增大,建立固废管理长效机制,有效识别固废环境风险和隐患,是企业防范固废管理风险的有效途径。如何快速使固废管理风险受控和进行隐患治理,是企业必须认真思考的问题。通过对EMS体系和双控机制优势的有效融合,提出了基于EMS和双控机制的企业环保管理双基核心管理方法,并将此方法运用到企业管理中。实践证明,企业的环保管理成效显著,环保管理风险防范能力快速获得大幅提升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号