全文获取类型
收费全文 | 899篇 |
免费 | 81篇 |
国内免费 | 258篇 |
专业分类
安全科学 | 132篇 |
废物处理 | 18篇 |
环保管理 | 107篇 |
综合类 | 780篇 |
基础理论 | 57篇 |
污染及防治 | 60篇 |
评价与监测 | 49篇 |
社会与环境 | 21篇 |
灾害及防治 | 14篇 |
出版年
2024年 | 32篇 |
2023年 | 62篇 |
2022年 | 89篇 |
2021年 | 92篇 |
2020年 | 78篇 |
2019年 | 49篇 |
2018年 | 26篇 |
2017年 | 32篇 |
2016年 | 23篇 |
2015年 | 30篇 |
2014年 | 92篇 |
2013年 | 32篇 |
2012年 | 44篇 |
2011年 | 34篇 |
2010年 | 22篇 |
2009年 | 29篇 |
2008年 | 85篇 |
2007年 | 98篇 |
2006年 | 71篇 |
2005年 | 57篇 |
2004年 | 42篇 |
2003年 | 29篇 |
2002年 | 18篇 |
2001年 | 17篇 |
2000年 | 12篇 |
1999年 | 10篇 |
1998年 | 8篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 6篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 2篇 |
排序方式: 共有1238条查询结果,搜索用时 15 毫秒
971.
基于2016—2022年南京市大气挥发性有机物(VOCs)自动监测数据,分析VOCs污染特征及其臭氧生成潜势(OFP)。结果表明:2016—2022年南京市大气VOCs及其组分体积分数均显著下降,TVOCs 7年均值为21.7×10-9,各组分占比从大到小依次为烷烃>烯烃>芳香烃>炔烃;TVOCs及烷烃、烯烃、芳香烃季节变化一致,均为冬季>秋季>春季>夏季,炔烃为冬季>春季>秋季>夏季;TVOCs及烷烃、烯烃、炔烃月变化整体呈“V”字型特征,芳香烃近似为“W”型;除炔烃外,小时体积分数日变化基本呈“单峰型”特征。2016—2022年OFP年际变化呈显著下降趋势,7年均值为132.1 μg/m3;OFP贡献较大的组分为烯烃(39.1%)和芳香烃(38.1%),臭氧生成的VOCs关键物种为乙烯、间/对二甲苯、甲苯、丙烯和异戊二烯,控制烯烃和芳香烃排放有利于南京市的臭氧污染防治。 相似文献
972.
亚硝胺是一类具有高致癌性和致突变性的含氮有机污染物. 支流水系作为我国中小城镇的主要饮用水源,其亚硝胺的污染情况尚不明确,关于支流河水中亚硝胺及其前体物质浓度的研究仍十分缺乏. 以水体中常见8种亚硝胺为研究对象,检测了长江一级支流清江河水及氯胺化处理后水样中亚硝胺浓度组成特征,并针对重要的污水排放源进行重点监测,分析亚硝胺及其前体物质的环境影响因素,评估其健康和生态风险. 结果表明,清江河水共检出6种亚硝胺,其中主要亚硝胺为NDMA[(10 ±15)ng·L-1]、NDEA[(9.3 ±9.3)ng·L-1]和NDBA[(14 ±7.8)ng·L-1],氯胺化反应后的水样中有7种亚硝胺检出,主要为NDMA-FP[(46 ±21)ng·L-1]、NDEA-FP[(26 ±8.3)ng·L-1]和NDBA-FP[(22 ±13)ng·L-1];河水中亚硝胺的浓度分布整体呈现为中游高于上游和下游,在有污水排放与支流汇入点的亚硝胺浓度明显高于其他点位;对污水直接排放点的监测发现,携带有亚硝胺及其前体物质的污水输入是河水中亚硝胺的主要来源;此外,3种主控污染物NDMA、NDBA和NDEA的浓度存在一定相关性,主要原因是其存在相似的污水来源;饮用水源地亚硝胺浓度对当地居民存在潜在致癌风险(2.4×10-5);此外,由于清江具有较高的亚硝胺生成潜能,其饮用水致癌风险可能会更高;生态风险评价表明,亚硝胺对于清江流域的生态风险商值低于0.002,生态风险可忽略不计. 相似文献
973.
重点臭氧污染区域和城市的臭氧生成敏感性分析是近地面臭氧(O3)污染防控的重要依据. 基于上海市淀山湖站(郊区)、浦东站(城区)和新联站(工业区站)这3个典型站点2016~2020年5年间O3、VOCs和NOx数据,利用观测模型定量分析5年间臭氧高发季O3与前体物(VOCs和NOx)之间的非线性关系. 结果表明,2016~2020年间,上海市近地面O3高发月份为4~9月,其中,高峰值出现在6~8月;VOCs体积分数和NO2浓度对浦东站的O3浓度具备较强的指示意义,淀山湖站的O3浓度主要是受区域性环境、气象因素和跨区域传输影响,新联站O3浓度为环境背景浓度与工业区光化学污染的叠加效应. 浦东站和淀山湖站处于VOCs控制区,新联站2016~2019年整体处于NOx控制区附近,2020年开始逐步向VOCs控制区转变;浦东站、淀山湖站和新联站的L·OH均为:NOx控制区>协同控制区>VOCs控制区. 相似文献
974.
合金铝容器铝溶出试验与分析 总被引:1,自引:0,他引:1
试验发现,氯化钠存在可使合金铝容器表面铝溶出增多,持续煮沸容嚣水能使铝的溶出总量增大,水垢的生成对水中铝离子浓度有影响。 相似文献
975.
本简要从地震科普的角度阐述了在农村推进防震减灾工作的重要意义,并试述当前几项紧迫的工作,强调了群众参与的意义。 相似文献
976.
上海城区典型污染过程VOCs特征及臭氧潜势分析 总被引:3,自引:7,他引:3
利用在线气相色谱-氢火焰离子化(GC-FID)监测系统对上海市城区典型污染前、污染中和污染后的55种挥发性有机物(VOCs)进行了自动连续监测,分析了各个阶段VOCs(C2~C12)体积分数、物种变化特征.结果表明上海市城区典型污染前VOCs平均体积分数为27×10-9;污染中VOCs体积分数迅速增加,比污染前高3倍,达到87×10-9;具体以烷烃最高(35.2×10-9)、芳香烃次之(30.0×10-9)、烯烃最低(21.6×10-9);用最大臭氧生成潜势量(ΦOFP)对不同污染阶段污染VOCs大气活性进行了评估,结果表明不同污染阶段VOCs的ΦOFP均呈现污染前〈污染后〈污染中的变化特征.污染前期的ΦOFP依次是芳香烃(53.0%)〉烯烃(36.1%)〉烷烃(11.7%);污染中期的ΦOFP依次是芳香烃(54.7%)〉烯烃(36.7%)〉烷烃(9.8%);污染后期ΦOFP则依次是烯烃(52.7%)〉芳香烃(36.0%)〉烷烃(13.2%).具体关键活性物种主要包括甲苯、间、对二甲苯、1,3-丁二烯、乙烯、丙烯等芳香烃和烯烃物种,具体以烯烃C2~C4为主,芳香烃C6~C8为主.不同污染阶段O3与ΦOFP之间存在典型的非线性负相关关系,并且ΦOFP转化为O3的量均小于20%,说明臭氧浓度仍有很大上升空间;这对定量评估大气中VOCs对臭氧的影响具有重要意义. 相似文献
977.
挥发性有机物(VOCs)是对流层大气的关键化学组分,其中工业排放是VOCs的重要来源之一.于2021年夏初在中国珠江三角洲的典型工业地区中开展了74种VOCs的在线观测.在整个观测期间,总挥发性有机物(TVOC)的体积分数平均值为(81.9±45.4)×10-9.其中,含氧挥发性有机物(OVOCs)在TVOC中的占比最大,平均值为51.5%,并且其占比随TVOC体积分数的升高而逐渐增大.芳香烃在TVOC中的占比为19.4%.进一步分析发现,与工业活动相关的排放是工业区环境大气中芳香烃与OVOCs的主要来源.芳香烃和OVOCs对臭氧生成潜势(OFP)的贡献最为显著,在总OFP中的贡献率分别为56.4%和26.7%.此外,与烃类组分相比,OVOCs的大气化学活性同样较高,贡献了大气中总·OH反应活性的40.0%.二甲苯、甲苯、丙烯醛和乙酸乙酯对二次污染形成的贡献较大,在制定大气二次污染管控策略时应优先考虑.研究结果强调了工业地区中OVOCs对TVOC的重要贡献以及OVOCs在大气二次污染形成过程中的重要作用. 相似文献
978.
加油站油气处理装置是控制埋地油罐油气压力并对油气进行回收处理的装置,测试分析油气处理装置进口和出口挥发性有机物(VOCs)化学组成,利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP),量化评估其二次污染生成贡献.结果表明:(1)油气处理装置进口和出口ρ(TVOC)分别为436~706 g·m-3和4.98~10.04 g·m-3,VOCs排放主要为烷烃(72%±4%)、含氧有机物(14%±2%)和烯烃(11%±5%).不同处理工艺VOCs排放差异较小,关键物种均为异戊烷(约25%),其次为正丁烷、异丁烷和正戊烷.(2)油气处理装置出口排放的VOCs臭氧生成系数(SR值)为2.6~3.3 g·g-1,OFP为3.5~25.6 g·m-3,其中烯烃对OFP贡献率(43%~69%)最大,其次为烷烃(20%~35%)和含氧有机物(10%~22%),OFP主要贡献物种为丁烯、顺-2-丁烯、反-2-丁烯、异戊烷和丙醛.(3)油气处理装... 相似文献
979.
成都市典型有机溶剂使用行业VOCs组成成分谱及臭氧生成潜势研究 总被引:3,自引:0,他引:3
选取成都市5大典型有机溶剂使用行业——包装印刷业、人造板制造业、家具制造业、制鞋业和化学品制造业具有代表性的15家企业测定挥发性有机物(VOCs)排放组分,并对其不同组分的臭氧生成潜势(OFP)进行分析.研究结果表明:不同行业排放的VOCs之间存在较大差异,包装印刷业和人造板制造业主要排放含氧VOCs(OVOCs),家具制造业主要排放芳香烃和OVOCs,制鞋业和化学品制造业主要排放OVOCs、芳香烃和烷烃;芳香烃是化学反应活性最强的组分,对臭氧的生成贡献普遍较大,其中贡献最大的邻二甲苯及间二甲苯的OFP值分别为92.13 mg·m~(-3)和89.65 mg·m~(-3),二者占总OFP的40%;五大典型有机溶剂使用行业中,家具制造业对O_3生成的贡献最大,OFP贡献率为34.59%. 相似文献
980.
以2019年2~3月北京两次污染过程为例,针对气象要素及污染物浓度进行特征分析,利用后向轨迹及WRF-CAMx模式,分析供暖结束前后的污染物演变规律,并探讨气象条件、区域输送及二次转化等对污染过程的影响.结果表明,2月21~24日(过程1)和3月18~20日(过程2)平均ρ(PM2.5)差异不大,分别为100.1 μg·m-3和97.2 μg·m-3,但过程1平均峰值偏高、日变化明显、过程发展迅速和有两个峰值阶段,且为区域性污染,而过程2更倾向于北京局地污染.两次过程逐时ρ(SO2)均不超16 μg·m-3,供暖燃煤治理效果显著,但过程1的SO2存在夜间次峰值,体现供暖排放影响.过程1的ρ(CO)较高,尤其是2月21~22日前后ρ(CO)/ρ(SO2)升高,且区域中南部城市及北京南部背景站污染高于城区,表明过程1扩散条件不利,且第一个峰值主要受区域输送影响.过程2的ρ(PM2.5)/ρ(CO)偏高,表明二次生成PM2.5占比略大;ρ(NO2)/ρ(CO)、ρ(SO2)/ρ(CO)和ρ(SO42-)/ρ(PM2.5)偏大,SOR与过程1持平,表明过程1更有利于气体相态转化,过程2受工业燃煤影响更大.但将过程1分阶段分析显示,过程1第二阶段与过程2的PM2.5二次生成指征相似,均高于过程1第一阶段,即过程1第二个峰值与过程2主要与本地排放和化学转化相关.WRF-CMAx对污染物演变趋势有较好的再现能力.同化试验对PM2.5趋势模拟显著提升,提高了与观测的相关性,但模拟值偏低;对NO2的模拟2月偏低、3月偏高,对SO2模拟明显偏高有一定纠正;此外,过程2中北京污染物浓度对河北的敏感性相对过程1偏低,即过程1受区域输送影响更大.模式对污染暴发性增长的模拟亟待提升,污染物种类对减排的响应及大气氧化剂和气溶胶性质相关的反馈等可能是影响模拟效果的重要原因,需进一步研究. 相似文献