全文获取类型
收费全文 | 231篇 |
免费 | 10篇 |
国内免费 | 72篇 |
专业分类
安全科学 | 1篇 |
废物处理 | 1篇 |
环保管理 | 31篇 |
综合类 | 122篇 |
基础理论 | 137篇 |
污染及防治 | 8篇 |
社会与环境 | 13篇 |
出版年
2024年 | 2篇 |
2023年 | 7篇 |
2022年 | 9篇 |
2021年 | 15篇 |
2020年 | 7篇 |
2019年 | 15篇 |
2018年 | 8篇 |
2017年 | 10篇 |
2016年 | 7篇 |
2015年 | 4篇 |
2014年 | 15篇 |
2013年 | 11篇 |
2012年 | 14篇 |
2011年 | 20篇 |
2010年 | 11篇 |
2009年 | 11篇 |
2008年 | 17篇 |
2007年 | 10篇 |
2006年 | 6篇 |
2005年 | 5篇 |
2004年 | 9篇 |
2003年 | 11篇 |
2002年 | 7篇 |
2001年 | 8篇 |
2000年 | 15篇 |
1999年 | 8篇 |
1998年 | 11篇 |
1997年 | 11篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 7篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 2篇 |
排序方式: 共有313条查询结果,搜索用时 0 毫秒
11.
施肥对不同肥力水平春玉米农田土壤有机碳及其组分的影响 总被引:1,自引:0,他引:1
选取辽河灌区不同肥力水平春玉米(Zea mays ssp. mays L.)农田土壤为研究对象,通过连续3年田间定位试验研究施肥对不同层次土壤有机碳组分(TOC、ASOC、LFOC、DOC和MBC)的影响,分析土壤有机碳组分的产量效应.结果表明,连续种植春玉米能够显著增加低产田土壤w(TOC),增加各产田土壤w(ASOC)和w(MBC),降低各产田土壤w(LFOC),土壤w(DOC)变化较小.施肥使土壤w(TOC)增加了-13.41%~7.54%,平均增加了0.16%;使高产田表层(0~10 cm)土壤w(TOC)显著增加,低产田犁底层(20~40 cm)土壤w(TOC)显著降低.施肥使土壤w(ASOC)增加了-13.98%~72.22%,平均增加了15.82%;使低产田犁底层和高产田耕层(10~20 cm)土壤w(ASOC)显著增加,中产田耕层土壤w(ASOC)显著降低.施肥使土壤w(LFOC)增加了-42.60%~168.57%,平均增加了48.83%;使中产田表层和犁底层、高产田表层和耕层土壤w(LFOC)显著增加,高产田犁底层土壤 w(LFOC)显著降低.施肥使土壤 w(DOC)增加了-42.74%~51.29%,平均增加了9.36%;使中产田耕层和犁底层、高产田表层和耕层土壤 w(DOC)显著增加,低产田耕层土壤 w(DOC)显著降低.施肥使土壤 w(MBC)增加了-1.16%~19.97%,平均增加了9.32%,除中产田耕层土壤之外其他土层土壤w(MBC)均有所增加.施肥主要提高土壤ASOC和LFOC含量,促进土壤DOC的变化.施肥显著增加低产田土壤有机碳组分含量,促进中产田土壤有机碳组分变化,增加高产田土壤有机碳耗损.施肥主要增加表层(0~10 cm)土壤有机碳组分含量,耗损犁底层(20~40 cm)土壤有机碳,调解耕层(10~20 cm)土壤活性有机碳组分.施肥对微生物可利用性及结构不同的活性有机碳组分影响不同;高、中、低产田因其土壤理化性状及有机碳本底值不同,对施肥的响应存在差异.施肥总体增加土壤活性有机碳各组分含量,同时通过改变微生物及玉米根系活力影响活性有机碳含量及组分.土壤中有机碳组分与产量的回归方程为(产量)=-4665.61-0.008×w(SOC)-0.421×w (ASOC)-0.777×w (LFOC)+5.370×w (DOC)+33.408×w (MBC).ASOC和MBC具有土壤肥力指示作用,施肥主要通过调控土壤ASOC提高玉米产量. 相似文献
12.
长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响 总被引:22,自引:0,他引:22
江西红壤生态试验站长期定位试验中不同施肥处理红壤水稻土酶活性及微生物群落功能多样性的研究结果表明,不同施肥条件下土壤酶活性及微生物群落功能多样性差异较大,土壤脲酶和脱氢酶活性可以作为土壤肥力的指标。经过20 a施肥管理及水稻种植,土壤酶活性及生物量有很大提高;但是B IOLOGTM生态测试板测定结果显示,施肥使微生物生物群落物种丰富度有所减少,施P土壤酶活性、微生物群落功能多样性均大于未施P土壤,采用秸秆还田处理的群落物种均一性高于未采用秸秆还田处理。 相似文献
13.
14.
施肥量剧减会造成作物大幅度减产吗? 总被引:3,自引:0,他引:3
利用匈牙利Balaton湖流域200多个农场田块1981-2002年的作物产量、施肥量和土壤养分历史资料,分析施肥量和作物产量的关系,探讨施肥量剧减对作物产量的影响.结果表明,该区在经历上世纪80年代末社会经济变革之后,几种作物施肥量剧烈下降,其中氮肥降低了256%,而磷钾肥降低了80%以上;但这种剧烈降低并没有引起作物大幅度减产,小麦产量变化不大,其他作物产量降低幅度不到10%,也远远低于肥料降低幅度;同时,土壤有效磷钾含量也有下降;并且,化肥用量的下降也对Balaton湖水质量改善有一定贡献.该区的经验对我国改变目前这种过量施肥的局面、减少土壤养分过量积累、调整化肥发展方向等均有一定借鉴作用. 相似文献
15.
长期施肥对土壤有机质积累的影响 总被引:4,自引:0,他引:4
20年的NPK施肥定位试验,有利于深刻揭示土壤肥力特征与营养平衡规律。以位于黄淮海平原的中国科学院禹城综合试验站为例,探讨和估算了长期定量施肥对冬小麦(TriticuspaestvumL.)、夏玉米(ZeaMaysL.)生长和土壤有机质(SOM)的影响。结果表明,长期的N、P肥配施或N、P、K均衡施肥,可显著增加SOM储量,并且后者要优于前者;SOM增加主要集中在0-20cm深度的土层,40-60cm基本不变;生物量对SOM储量变化影响明显,NPK,NP处理作物生长良好,作物残体输人明显优于其他处理;0-40cm可以代表该区用以计算土壤固碳潜力,并且在N、P、K均衡施肥条件下,0-40cm土层中SOM储量长期以来持续增加,并未达到上限,每年的平均固碳速率(以C计)达182.8kg·hm-1,约是全球平均水平的1.5倍,全国平均水平的1.1倍。华北平原若按N、P、K均衡施肥,农田土壤每年固碳潜力将达到1.6-2.4Tg·a-1。 相似文献
16.
山西矿区矸石山复垦种植施肥策略 总被引:8,自引:1,他引:8
围绕煤矸石缺乏有机活性物质及有效养分的问题,在矸石山复垦种植时,对施肥作了试验研究。结果表明,煤矸石风化物由于吸附性能低,保肥性差,所以施用化肥时一次用量不宜过大。并从降低复垦的投资与难度以及尽快建立一个可自我维持生长的植被出发,提出了矸石山复垦种植时化肥与污泥配合施用的施肥策略,并对污泥的施用效果做了研究。 相似文献
17.
近年来我国南方大力发展珍贵树种人工林,檀香(Santalum album Linn.)-降香黄檀(Dalbergia odorifera T.Chen.)混交林是其中的典型代表.为评估不同管理措施下该林分养分循环特征,在广东省佛山市高明区选取8年生檀香-降香黄檀混交林,开展铲草、施肥、铲草+施肥抚育管理对其凋落物及养分... 相似文献
18.
较系统地研究了香蕉组培苗的营养与施肥,试验方案包括了NPK13种用量水平、10种不同NPK配比和中微量元素混施.试验结果表明,在一定的NPK施肥基础上.再增施NPK均能获得不同程度的增产,其中增施N的增产幅为4.7%-15.0%,增施P、K的分别为3.4%-15.1%和6.6%-12.6%.增N有利于植株增高、茎围增粗、长叶增快和提早吐蕾;增P对植株增高和提早吐蕾也有一定的作用;增K主要有利于茎围增粗,但在高N高P下增K也同样具有增N的多种效果.增K的另一效应是延缓吐蕾期而使吐蕾期较集中一致,这有利于田间管理和收获;施用中微量元素的增产效果显著,同时也改善和提高了果实品质.应提倡应用和推广. 相似文献
19.
施肥与地膜覆盖对土壤有机质平衡的影响 总被引:3,自引:0,他引:3
用田间长期定位试验法研究了施肥与地膜覆盖条件下玉米连作在壤质棕壤中有机质的矿化、积累和平衡。结果表明,土壤有机质矿化率在0.0107 ̄0.438/a之间,施肥与地膜覆盖有利于土壤有机质的积累与平衡,并加快有机质矿化;在本试验各施肥处理中土壤有机质均有所积累;在连年稳定施肥条件下,有机肥的施用会明显提高土壤有机质平衡值。 相似文献
20.
施肥对华北高产区土壤NO-3-N淋失与作物NO-3-N含量及产量的影响 总被引:15,自引:0,他引:15
利用4a的平衡施肥定位试验,研究太行山山前平原高产区冬小麦、夏玉米轮作制度下施肥对潮褐土中硝态氮的分布、移动、积累、植株吸收以及作物产量的影响。结果表明,土壤剖面中硝态氮含量与施肥量直接相关,过量施用氮肥使硝态氮在土壤中大量积累并向下层快速移动;氮磷对作物的养分供应存在着既相互促进又相互竞争的关系,施用适量磷肥可以促进小麦、玉米对氮素的吸收,提高作物产量,减少氮素在土壤中积累和淋失,但施磷量太高,由于氮磷之间的竞争作用,作物吸氮量反而下降,从而导致土壤中硝态氮的积累和淋失加剧,施用钾肥抑制了土壤硝态氮积累,促进了两季作物植株对氮素的吸收,从减少土壤硝态氮积累和淋失的角度,提出该区合理的施肥配比为组合N2P2K2,即ρA(N)=200kg hm^-2,ρA(P)=32.5kg hm^-2,ρA(K)=150kg hm^-2。图6参13。 相似文献