排序方式: 共有21条查询结果,搜索用时 0 毫秒
11.
以前和父亲说到瓷器,父亲说,他最喜欢宋瓷,他说,宋代是文学艺术集大成的时候,许多方面都发展到了最高峰。父亲的审美很符合艺术史的主流观念。但我对享有盛名的宋瓷却一直反应平平。怎么说呢,它就像宋代画院里的画,技艺精湛,也不乏意趣,但就是,不动人。我的意思是说,它没有打动我。有一次,去上海博物馆,无意 相似文献
12.
IntroductionThediversityamonginsectlifehistoriesmakesitdifficulttocomparetheeffectofachemical(orfactor)onthedevelopmentoftheseorganisms.Thediversityofbioassaysrangesfromthepopulationleveltothemolecularlevelandfrominvivotoinvitrostudies(Zhang ,1 993 ) .Differentparametershavebeenusedtostudyinsectgrowthinhibitionofmanychemicals.Forexample ,LD50 (thedosewhichcauses50 %mortalityinapopulation)iscommonlyusedtodeterminetheactivityofchemicalsthathaveacutetoxicity .Itcannotbeusedtothosechemicalsthatd… 相似文献
13.
桑树(Morus alba)可与丛枝菌根(AM)真菌形成互利共生体,丛枝菌根真菌能对桑树的重金属元素吸收产生积极的响应。然而,这种响应随环境条件的变化而有所不同。贵州荔波和黄平两地种植养蚕桑树,提高桑叶质量对养蚕业具有重要意义。荔波和黄平两地均处于喀斯特地区,土壤pH因石灰岩和砂岩交叉分布而有所差异。本文将揭示土壤因素是如何影响桑树与丛枝菌根真菌互利共生体的形成从而影响桑树对重金属元素的吸收。实验结果表明,荔波桑地平均土壤 pH (4.92±1.03)明显低于黄平(5.96±1.08)。土壤酸性直接影响 AM 真菌的分布,荔波的偏酸性土壤环境有利于真菌生长,且有利于桑树与丛枝菌根真菌共生关系的形成。此外,偏酸性土壤条件有利于增加重金属元素的生物可利用性,从而加强植物体对重金属元素的吸收,包括有毒元素 Cd。与黄平相比,生长在荔波的桑树叶片具有较高含量的重金属元素。荔波桑树叶片中的糖类含量明显低于黄平的,分别为(67±27)mg·g-1、(105±57)mg·g-1;而荔波桑树根系中的糖类含量明显高于黄平,分别为(125±43)mg·g-1、(91±43)mg·g-1。该结果说明,与黄平(具有较高的土壤pH)相比,荔波(具有较低的土壤pH)桑树叶片中的光合作用产物将更多地被输入到桑树的根系中。真菌是专性共生物,如果没有植物所供给的光合产物,真菌就不能生存。根系分泌物的另一个重要作用是溶解重金属,使它们具有较强的移动能力,以便被宿主植物所吸收。这就解释了为什么在较低土壤pH环境条件下生长的桑树的叶片含有较高含量的重金属元素。因此,菌根植物根系的分泌作用是一个非常重要的过程。尽管桑树具有耐干旱贫瘠的能力,且能够适应于喀斯特环境,但桑树喜好的是环境仍是偏酸性且养分充足的土壤。 相似文献
14.
15.
等高固氮植物篱中套种桑树的桑叶产量及生物产量 总被引:9,自引:0,他引:9
对套种在等高固氮植物篱中的桑树(植物篱桑)和地埂桑全年的桑叶产量和生物产量、树势、桑叶营养成分等进行了研究,结果表明,植物篱桑各季的桑叶产量和单叶面积分别比地埂桑高114.3%-180.6%、7.8%-56.6%;全年株总片叶量、株冬条重、株枝叶总量分别比地埂桑高157.0%、294.3%、186.6%;单叶重除晚秋桑比地埂桑高4.1%外,其它各季高27.6%-66.5%;植物篱桑的树势极显著优于地埂桑,其有效条数、平均有效条长、平均粗和平均每m条着叶的数分别比地埂桑高84.8%、29.5%、39.0%、15.5%;植物篱桑下的土壤有机质和全氮含量高于地埂桑;二者桑叶的营养成分高低则相差不大。表5参16。 相似文献
16.
以桑树杆为原料,制备了原始桑树杆生物炭(M-BC)及磁性氧化铁/桑树杆生物炭(Fe-BC)并对其进行表征.通过土壤培养实验,研究了3个温度下炭化制备的Fe-BC和M-BC在不同培养时间对土壤浸出液溶解性有机碳(DOC)和土壤砷(As)形态等的影响.结果表明:①Fe-BC负载的铁氧化物主要为Fe3 O4,且有磁性,主要官能团有C=O双键、O—H键、C—O键和Fe—O键;Fe-BC-400、Fe-BC-500和Fe-BC-600的pHzpc分别为8.92、8.74和9.19,比表面积分别为447.412、482.697和525.708 m2 ·g-1.②土壤浸出液中ρ(DOC)随着M-BC和Fe-BC炭化温度的升高而分别降低11.6~315.6 mg ·L-1和78~365.6 mg ·L-1,土壤浸出液中DOC浓度与土壤电导率(EC)值呈负相关;在培养第35 d,添加Fe-BC-600的土壤浸出液中As浓度比对照组土壤浸出液中的降低了55.96%.土壤浸出液中As浓度与DOC浓度相关性不显著.③添加Fe-BC的土壤有效态As占比均低于对照组的,在培养第35 d时,Fe-BC-600可使土壤有效态As占比降低39.21%.④在培养第35 d时,添加M-BC的土壤残渣态As含量减少了17.76%~49.11%,添加Fe-BC-600的土壤残渣态As占比增加了80%.Fe-BC-600最有利于降低土壤溶液DOC浓度,提高残渣态As含量,从而降低土壤As生物有效性.研究可为磁性氧化铁/生物炭在砷污染土壤修复提供理论依据. 相似文献
17.
木本植物具有根系发达、生物量大、适应性强等特点,可广泛用于重金属污染土壤修复.本文通过5年的田间修复试验,研究了桑树(Morus alba L.)对污染土壤中重金属的累积和分布特征、土壤中重金属和营养元素有效性含量的变化,来探讨桑树修复某尾矿区污染土壤中Mn、Zn和Cd等重金属的效果.研究结果表明,桑树生物量大,可用于重金属污染土壤的生态修复与景观恢复.田间种植5年后,桑树整株干重每株可达4 kg.桑树对土壤中重金属具有一定的转运和累积能力,地上部分中Cd、Zn和Mn等重金属含量明显大于根部,尤其是叶片中重金属含量明显大于枝和主干中的含量.修复5年后,桑树地上部分Zn和Mn的累积总量可达3277.7 mg·100 m~(-2)和2422.4 mg·100 m~(-2),且土壤中Mn和Zn含量分别从2192.5 mg·kg~(-1)和103.2 mg·kg~(-1)降低至1790.0 mg·kg~(-1)和85.94 mg·kg~(-1),同时土壤有效态Mn和Zn分别显著(P0.05)降低66.0%和28.6%.然而,桑树落叶中Cd、Zn和Mn含量分别可达0.36、64.5、189.2 mg·kg~(-1).因此,通过定期清除桑树落叶或刈割地上部分,可防止叶片中重金属对土壤造成二次污染,同时削减土壤中重金属含量.同时,经桑树修复5年后土壤中碱解氮、有效磷和速效钾含量均显著(P0.05)降低,需定期补充相应氮、磷和钾肥来强化桑树修复尾矿区重金属污染土壤. 相似文献
18.
19.
土壤铅污染对桑树生长及桑叶品质的影响研究 总被引:2,自引:0,他引:2
运用盆栽试验和室内实验相结合的方法,研究了土壤不同浓度铅污染对桑树生长及桑叶品质的影响.结果表明,低浓度铅(≤200mg/kg干土)处理使桑树的株高呈现上升趋势,中、高浓度铅(≥300mg/kg干土)处理使桑树的株高呈现下降趋势;而桑叶中叶绿素总量、可溶性糖含量、淀粉含量均随着外加铅浓度梯度的增加呈先上升后下降的趋势,转折点为200mg/kg干土(土壤一级标准).土壤中的铅浓度超过200mg/kg干土后,桑树生长及桑叶品质开始受到明显胁迫. 相似文献
20.
芦竹和木本植物间种修复重金属污染土壤 总被引:2,自引:0,他引:2
通过温室盆栽实验,研究草本植物芦竹与木本植物构树、桑树间种修复重金属污染土壤的潜力.结果表明,重金属污染土壤上芦竹与构树、桑树间种有利于植物的生长,提高植物对污染土壤中重金属的富集能力,并有效改善土壤酶活性.重金属污染土壤上单种芦竹、构树和桑树的叶片光合色素含量随着修复时间的延长呈下降趋势,而芦竹与构树、桑树间种修复270 d后,构树叶片叶绿素a和类胡萝卜素含量,桑树叶片叶绿素b和类胡萝卜素含量均与修复初期(90 d)相比无显著差异;桑树叶片叶绿素a、叶绿素b以及类胡萝卜素含量较单种桑树分别显著(P 0. 05)提高99. 1%、177. 1%和119. 9%,且整株生物量显著(P 0. 05)提高26. 1%.芦竹-构树间种下植物地上部分Pb和Zn总量较单种芦竹分别显著(P 0. 05)提高171%和124%;芦竹-桑树间种下植物地上部分As和Pb总量较单种桑树和芦竹修复分别显著(P 0. 05)提高150%和76. 5%.芦竹与构树、桑树间种修复270 d后,污染土壤中As、Cd、Pb和Zn的赋存形态无明显变化,而且土壤脲酶、酸性磷酸酶和总磷酸酶活性明显优于部分单一植物修复.上述结果表明,芦竹与构树、桑树间种可有效用于重金属污染土壤修复,还可改善污染土壤的环境质量. 相似文献