首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   196篇
  国内免费   553篇
安全科学   72篇
废物处理   6篇
环保管理   31篇
综合类   1203篇
基础理论   122篇
污染及防治   45篇
评价与监测   114篇
社会与环境   8篇
灾害及防治   19篇
  2024年   21篇
  2023年   56篇
  2022年   87篇
  2021年   124篇
  2020年   102篇
  2019年   98篇
  2018年   83篇
  2017年   62篇
  2016年   69篇
  2015年   79篇
  2014年   108篇
  2013年   76篇
  2012年   79篇
  2011年   67篇
  2010年   44篇
  2009年   59篇
  2008年   47篇
  2007年   44篇
  2006年   38篇
  2005年   31篇
  2004年   27篇
  2003年   17篇
  2002年   21篇
  2001年   25篇
  2000年   31篇
  1999年   18篇
  1998年   17篇
  1997年   16篇
  1996年   22篇
  1995年   2篇
  1994年   6篇
  1993年   9篇
  1992年   13篇
  1991年   10篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有1620条查询结果,搜索用时 187 毫秒
891.
杨唐  韩云平  李琳  刘俊新 《环境科学》2019,40(4):1680-1687
粒径分布和微生物种群结构是雾-霾天气溶胶与人体健康密切相关的典型特征.采用安德森六级采样器在人体平均呼吸高度(近地面1.5 m)处对北京某地雾-霾天及晴天分别进行气溶胶样品采集,从不同粒径气溶胶中的可培养细菌、真菌浓度及种群结构角度展开研究.结果表明,雾-霾天不同粒径气溶胶中可培养微生物浓度呈现不均匀分布状态;不同粒径气溶胶中微生物浓度、种群结构差异性均明显高于晴天.雾-霾天条件下,在粒径大于3.3 μm的气溶胶中,芽孢杆菌(Bacillus sp.)占据优势地位,在粒径小于3.3 μm的气溶胶中,芽孢杆菌(Bacillus sp.)和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)占优势地位.而当雾-霾过后,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)在所有粒径的生物气溶胶中均占优势地位.雾-霾天条件下,在粒径大于3.3 μm的气溶胶中共检出5种优势真菌,分别是链格孢菌(Alternaria sp.)、意大利青霉(Penicillium italicum)、蓝状菌(Talaromyces stollii)、枝孢菌(Cladosporium sp.)和Davidiella sp.;而当雾-霾过后,仅链格孢菌(Alternaria sp.)被检测为优势菌.无论雾-霾天还是晴天,在粒径小于3.3 μm的气溶胶中真菌均主要以意大利青霉(Penicillium italicum)和蓝状菌(Talaromyces stollii)为主.在人体平均呼吸高度处,雾-霾天与晴天不同粒径气溶胶中微生物浓度和种群结构存在明显差异.雾-霾天人体平均呼吸高度处微生物浓度高、且种群结构较为复杂,其微生物特性对人体健康的潜在风险不容忽视.  相似文献   
892.
To investigate the seasonal variation of aerosol optical depth(AOD), extinction coefcient(EXT), single scattering albedo(SSA) and the decomposed impacts from sulfate(SO4 2) and black carbon(BC) over China, numerical experiments are conducted from November 2007 to December 2008 by using WRF-Chem. Comparison of model results with measurements shows that model can reproduce the spatial distribution and seasonal variation of AOD and SSA. Over south China, AOD is largest in spring(0.6–1.2) and lowest in summer(0.2–0.6). Over north, northeast and east China, AOD is highest in summer while lowest in winter. The high value of EXT under 850 hPa which is the reflection of low visibility ranges from 0.4–0.8 km 1and the high value area shifts to north during winter, spring and summer, then back to south in autumn. SSA is 0.92–0.94 in winter and 0.94–0.96 for the other three seasons because of highest BC concentration in winter over south China. Over east China, SSA is highest(0.92–0.96) in summer, and 0.88–0.92 during winter, spring and autumn as the concentration of scattering aerosol is highest while BC concentration is lowest in summer over this region. Over north China, SSA is highest(0.9–0.94) in summer and lowest(0.82–0.86) in winter due to the significant variation of aerosol concentration. The SO4 2 induced EXT increases about 5%– 55% and the impacts of BC on EXT is much smaller(2%–10%). The SO4 2-induced increase in SSA is 0.01–0.08 and the BC-induced SSA decreases 0.02–0.18.  相似文献   
893.
介绍了南京市气溶胶PM2.5和不同粒径气溶胶样品的采集,分析了PM10和PM2.5的污染状况、比例关系,以及不同粒径气溶颗粒物的污染特点.  相似文献   
894.
星载激光雷达CALIOP实行对地例行的垂直切片式扫描,形成对地球大气中气溶胶和云高分辨的立体监测网。系统介绍星载激光雷达CALIOP的功能、特性、数据结构、反演过程、产品和不确定性,CALIOP资料和产品在示踪沙尘和污染物输送,验证模型模拟的云和气溶胶空间分布,云和气溶胶相互作用,气溶胶和云空间分布三维结构的长期平均状态,更新有关气溶胶和云特性的认识等方面的应用,以及在我国区域空气质量研究中的应用前景。  相似文献   
895.
HONO来源及其对空气质量影响研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
综述了HONO来源(源排放、均相反应和非均相反应生成)、HONO模拟研究以及HONO来源对空气质量的影响.指出均相反应中激发态NO2与水汽作用形成HONO的机制在高NOx排放地区具有重要作用,但反应速率需进一步证实.非均相反应中水解反应可能是HONO最主要来源,空气质量模式模拟结果也支持该观点;soot表面的光照催化反应在soot高排放地区对HONO贡献较大,但仍需大量外场实验证实;土壤排放机理的外场实验研究极少,亟待加强.  相似文献   
896.
西安冬春季PM10中碳气溶胶的昼夜变化特征   总被引:5,自引:7,他引:5  
为探讨西安市大气碳气溶胶的季节变化和昼夜变化特征及来源,于2006-12-19~2007-01-21 (冬季)和2007-04-01~2007-04-30 (春季)连续采集了大气可吸入颗粒物(PM10)样品,并采用IMPROVE热光分析法分析了其中有机碳(OC)和元素碳(EC)的昼夜浓度.结果显示,冬季白天PM10及其中OC和EC的平均浓度分别为455.0、 62.4和7.5 μg/m3,夜晚的平均浓度分别为448.7、 66.1和6.9 μg/m3,对应春季白天的平均浓度分别为397.9、 26.7和6.9 μg/m3,夜晚分别为362.1、 31.9和8.6 μg/m3.冬季白天OC与EC的相关系数为0.44,较之春季0.81要差,主要与冬季采暖期燃料的多样性有关.碳气溶胶组分中,冬季白天和晚上二次有机碳气溶胶(SOC)的平均浓度为8.9和10.2 μg/m3,远高于春季(2.8和3.4 μg/m3),说明冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成.对碳气溶胶8种组分的因子分析结果表明,冬季燃煤排放及郊区的生物质排放对碳气溶胶有重要的贡献,而春季机动车的贡献明显增加.  相似文献   
897.
程丁  吴晟  吴兑  刘建  田智林 《环境科学学报》2018,38(6):2223-2232
为了解广州市城区不同季节黑碳气溶胶(BC)的时间变化规律及污染特征,利用广州市天河区暨南大学大气超级监测站AE-33黑碳仪在2015年干季(10、11月)和2016年湿季(4、5月)观测得到的BC数据及常规气象资料,针对BC在不同时间段的污染特征及来源进行了分析.结果表明:广州城区干季和湿季的BC平均浓度分别为(3.75±2.55)、(2.62±1.39)μg·m~(-3),本底浓度分别为(2.09±0.61)、(1.85±0.49)μg·m~(-3),干季BC污染较湿季严重,干季BC变化范围大于湿季;广州城区BC浓度呈白天低,夜间高的特点,BC波动在夜间更加剧烈;干湿两季的BC日变化特征有明显差异,干季呈现"双峰形",湿季呈现"单峰形";基于AAE的分析得出广州城区BC主要来源于化石燃料燃烧,干季AAE值大于湿季,是由于干季广州周边地区生物质燃烧事件增多,导致干季生物质燃烧对广州城区BC的贡献大于湿季.  相似文献   
898.
海洋-大气过程对南海气溶胶数浓度谱分布的影响   总被引:1,自引:0,他引:1  
孔亚文  盛立芳  刘骞  李秀镇 《环境科学》2016,37(7):2443-2452
利用2012年8月28日至10月13日期间走航观测的气溶胶数据,分析了南海气溶胶数浓度时空分布和粒径谱分布特征,以及海洋-大气过程的影响.结果表明,南海气溶胶数浓度的时空分布和粒径谱分布受海洋和陆地源以及当地气象条件如风速、风向、相对湿度、云量、温度等的共同影响.陆地气团影响下的海域气溶胶数浓度较大,达2 300个·cm~(-3);受陆地影响较小的海域大气较为洁净,气溶胶数浓度在1 200个·cm~(-3)以下.观测得到的气溶胶粒径谱包括积聚模态和粗模态,峰值分别位于0.08~0.2μm和0.5~2μm附近.出现频率较高的谱型有3种:陆地型,海洋背景1型和海洋背景2型.陆地型与海洋2型的谱分布形状基本一致,但后者次微米粒子数浓度非常小,是洁净海洋背景下最常见的谱型;海洋1型在0.05~0.1μm粒径段数浓度显著高于海洋2型,并且在大于0.5μm的粗粒子段,海洋1型的气溶胶数浓度超过陆地型气溶胶数浓度,暗示了海洋源对这两个粒径段的粒子数浓度的贡献.0.05~0.12μm的积聚模态粒子数浓度与低云量有明显的正相关关系,且当相对湿度达90%~95%时,0.08μm附近的粒子数浓度增加显著.0.5~6μm的粗模态海洋气溶胶对风速的依赖性较强,相关性达0.7;0.05~0.12μm气溶胶数浓度与风速呈现弱正相关;0.12~0.5μm粒子数浓度与风速呈负相关.随着相对湿度的增大,0.08~0.12μm的粒子数浓度降低,而0.05~0.08μm和0.5~6μm的粒子数浓度增大.降水过程中,各粒径段粒子数浓度逐渐降低,但在降水初期,相对湿度达到90%~95%,0.05~0.12μm和0.5~6μm的粒子数浓度显著增大,随后逐渐减小.  相似文献   
899.
重工业城市济源经常发生雾-霾污染事件.挥发性有机化合物(VOCs)是二次有机气溶胶(SOA)生成的前体物,SOA对细颗粒物(PM2.5)贡献约15%~20%.于2019年12月1日至12月31日在济源进行PM2.5、 O3、 VOCs和其他微量气体在线监测,并分析VOCs污染特征、来源和SOA生成潜势(SOAP).济源观测到φ(TVOC)平均值为(54.3±27.5)×10-9.烷烃、卤代烃和炔烃是主要组分.运用正交矩阵因子分解模型(PMF)识别并分配VOCs来源.确定8个主要VOCs来源:液化石油气/天然气(LPG/NG)、聚氯乙烯(PVC)工业、机动车、焦化工业、溶剂使用、工业、工艺过程和油气挥发.二次有机气溶胶生成潜势分析发现芳香烃对SOAP的贡献最大,其中苯系物(BTEX)对SOAP贡献最大.  相似文献   
900.
大气气溶胶在酸性降水中的作用非常重要.在"八五"期间酸性降水的研究中,进行了华北地区冬季空中大气气溶胶污染特征的分析和研究,填补了国内外相关研究领域的空白.结果表明,华北地区冬季空中大气气溶胶污染比较严重,形成了浓度与地面相近的空中污染区域,大气气溶胶主要来源于煤炭燃烧等人为过程.同时大气气溶胶具有较强的酸性,有利于酸性降水的形成.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号