首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   27篇
  国内免费   29篇
安全科学   98篇
环保管理   33篇
综合类   175篇
基础理论   20篇
污染及防治   11篇
评价与监测   6篇
社会与环境   42篇
灾害及防治   46篇
  2024年   4篇
  2023年   13篇
  2022年   14篇
  2021年   18篇
  2020年   12篇
  2019年   15篇
  2018年   8篇
  2017年   17篇
  2016年   12篇
  2015年   10篇
  2014年   27篇
  2013年   19篇
  2012年   32篇
  2011年   24篇
  2010年   19篇
  2009年   12篇
  2008年   21篇
  2007年   16篇
  2006年   29篇
  2005年   30篇
  2004年   22篇
  2003年   6篇
  2002年   7篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
排序方式: 共有431条查询结果,搜索用时 0 毫秒
281.
《劳动保护》2005,(2):32-33
事故伤亡情况 据统计,2004年全国共发生各类伤亡事故803571起,死亡136755人。与2003年同期相比,事故起数减少155545起,死亡人数减少315人,分别下降16.2%和0.2%。  相似文献   
282.
近35a长江中游大型通江湖泊季节性水情变化规律研究   总被引:1,自引:0,他引:1  
长江中游自然通江的洞庭湖和鄱阳湖,在长期的季风气候以及江湖交互作用下形成了相对稳定的涨-丰-退-枯季节性水位波动模式。近几十年来,受水利工程及气候变化的双重影响,两湖季节性水情均发生了显著改变。揭示和对比两湖季节性水位波动近年来的变化趋势及强度并分析其形成的可能原因,对于指导两湖地区的湖泊管理与实践,理解长江中游江湖关系演变现状具有重要意义。基于此,以2003年为断点(即1980~2002年与2003~2014年两时段),首先通过湖区多站点水文要素的单因素方差分析揭示两湖各自的季节性水情变化特征;然后通过两湖季节性水情变化状况的对比,分析长江中游大型通江湖泊水情变化的规律及其形成原因。得出的主要结论如下:(1)2003年后,涨水期和枯水期的两湖水情均呈偏枯趋势,且水位降幅均在由上游到中游的过程中扩大,由中游到下游的过程中减小,甚至涨水和枯水期的洞庭湖下游湖区还出现了水位的小幅抬升。(2)2003年后,丰水期和退水期的洞庭湖偏枯趋势呈现不同的空间分异,丰水期的洞庭湖水位下降程度在上、中游湖区更为剧烈,而退水期的水位下降程度在中、下游湖区更为剧烈。与此同时段的鄱阳湖偏枯趋势在丰水期和退水期均在由上游至下游的过程中增加。(3)2003年后的洞庭湖水位降幅在各个季节各个湖区均显著小于位于其下游的鄱阳湖。江湖关系对两湖及其不同湖区的作用方式和强度的差异是造成两湖季节性水情演变差异的主要原因。  相似文献   
283.
本文以三峡库区典型干支流作为研究对象,重点研究高水位运行期库湾水体及库区干流CO2分压(p CO2)的分布规律,计算CO2的扩散通量和释放总量。本研究于2013年9月至11月利用走航式观测系统对库区奉节段干支流表层水体及定点剖面水体中p CO2和相关水质参数进行了逐月观测。研究结果表明,干支流表层水体p CO2的分布和扩散通量差异显著。干流CO2扩散通量(F-CO2)9月至11月变化不大,为28.19±0.80mmol/(m2·d);支流在观测期内,扩散通量由负变正,其中朱衣河F-CO2从-6.86增至32.05mmol/(m2·d);梅溪河从-6.94增至37.85mmol/(m2·d),草堂河从-6.97增至31.05mmol/(m2·d)。由10至11月的数据推广到全年的高水位运行阶段(10月至次年1月),全库区CO2排放量可达166 450t,其中支流占30.17%。  相似文献   
284.
记者从4月23日在榕召开的全省设区市安监局长座谈会上获悉,1—3月份,全省安全生产形势总体保持平稳,事故四项指数同比呈较大幅度下降,其中事故起数4006起,同比减少1481起,下降27.0%;死亡792人,减少218人,下降21.6%;受伤4161人,减少1151人,下降21.7%;直接经济损失2708万元,减少1793万元,下降39.8%,安全生产主要控制指标进展情况较好,  相似文献   
285.
本文对北京市昌平地震台东三旗井数字化水位观测中出现的锯齿型“凹型”阶变现象进行了研究,并结合观测环境条件、同井孔体应变观测、区域地震活动、GPS地面沉降观测等分析,探析了该异常现象的成因。结果显示,该变化可能与环境变化引起区域周围电磁场的改变有关,可能是地震活动或应力应变引起电磁量增加导致水位仪器电信号干扰异常引起,是前兆异常特征的可信度低。  相似文献   
286.
三峡水库中下游水体氮磷时空变化与机制分析   总被引:1,自引:0,他引:1  
2010年每月定期测定了位于三峡水库中下游的云阳、巫山、秭归和三斗坪段的TN、NH4 N、NO3 N和TP浓度。结果表明:4个段面水质中的TN、NH4 N、NO3 N和TP浓度空间差异不显著,但季节变化显著,TN和TP的季节变化呈单峰格局,分别在5月和7月达到最大值;NH4 N的季节变化则呈双峰格局,主要的峰值出现在7、8月,次要的峰值出现在3、4月。4个地点低水位期(3~8月)的TN、NH4 N、NO3 N和TP浓度都高于高水位期(9月~次年2月)。主要因为在低水位期,长江上游和三峡库区的降雨量大,入库流量显著增加,污染物主要来自长江上游入库的非点源污染和水库两岸农田施用农药化肥造成的面源污染。三峡水库三期蓄水后,水库水质与前两期蓄水后的水质变化不大,水质仍然保持良好,高水位期为Ⅲ类水质,低水位期为Ⅳ类水质  相似文献   
287.
本文对巢湖地区三口地震观测深井的观测数据进行了分析、计算,求出了气压订正后深井静水位值与理论固体潮值相关最高时的气压系数.由于该值是采用优选法的方法确定的,所以称之为优选气压系数.优选气压系数反映了井孔本身系统对水位变化的放大性能,其本质是通过井孔系统对大气压和地应力这对矛盾运动结果的综合反映.优选气压系数对排除气压对水位的干扰,提取震兆异常变化具有一定的应用价值。  相似文献   
288.
2012—2017年鄱阳湖水位变化与氮磷响应特征研究   总被引:1,自引:0,他引:1  
  相似文献   
289.
融合卫星雷达测高(T/P、RA-2和Hydroweb)与光学遥感数据分析了一个长时间序列的阿牙克库木湖水位及面积变化趋势,并基于NDSI和监督分类的方法提取了湖泊补给冰川的面积。结果表明:阿牙克库木湖在监测期内逐年扩大,面积由1995年的624 km2逐年扩张到2015年的995 km2,在此期间水位总共上升了5 m。气温升高导致补给冰川持续消融,冰川面积由1994年的361.27 km2退缩到2016年的345.26 km2。区域气候的暖湿化是1995-2015年阿牙克库木湖水量增加的主要背景,流域降水量的增加对湖泊水位上升产生直接驱动,持续升高的气温导致的补给冰川消融对湖泊扩张具有重要的促进作用。此外,最大可能蒸散、高海拔降水(雪)、冻土融化等因素也对湖泊的扩张产生重要影响。总之,准确掌握阿牙克库木湖的水量及其对气候变化的响应,对深刻理解青藏高原北部边缘的水资源平衡研究具有重要意义。  相似文献   
290.
为研究原油泄漏后在非均质土层中的重分布过程及影响因素,建立3种不同组合的非均质土层物理模型(编号分别为L-a、L-b、L-c)进行原油泄漏后重分布过程的室内模拟,分别代表局部非渗透性透镜体(浅层泄漏)、大面积弱渗透性粉质亚黏土(内部泄漏)和土层界面(浅层泄漏)存在条件.待原油重力渗透稳定后分别进行升降水位和降水的模拟试验,由PET聚酯膜绘制、CCD相机拍摄和基于CMYK的灰度分析等图像采集和分析法获得平面运移分布图、纵剖面灰度变化图,采用风干法和紫外分光光度法获得采样点含水率和含油率对比图,分析原油泄漏后在非均质土层中的运移规律.结果表明:①在水位波动下,局部非渗透性透镜体和大面积粉质亚黏土弱透水层可有效截获原油,使原油在其左右及上侧大量聚集;3组试验中原油的重分布过程以垂向运移为主,但在粗-细界面和细-粗界面会因油水驱替和毛细压力导致其部分横向运移.②模拟降水时,受到淋滤和水位波动的综合效应,原油油聚区不能在短时间内随水位线移动,体现其滞后性;在模拟降水结束后油聚区大量分布于水位线位置和细-粗界面处;降水对土壤中的原油具一定稀释作用.③L-a和L-c组表层泄漏的原油分布面积(分别为800、538 cm2)较大,采样点含油率极差(分别为6.23%、6.80%)较大;而L-b组内部泄漏的原油分布面积(235 cm2)较小,采样点含油率极差(2.99%)较小.研究显示,地下水位波动及降水对非均质土层中原油的周期性聚集和释放有一定影响,尤其是局部非渗透性透镜体、大面积弱渗透性粉质亚黏土及岩性界面存在土层中影响更大.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号