首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   61篇
  国内免费   223篇
安全科学   23篇
废物处理   2篇
环保管理   40篇
综合类   561篇
基础理论   90篇
污染及防治   72篇
评价与监测   64篇
社会与环境   22篇
灾害及防治   2篇
  2024年   12篇
  2023年   21篇
  2022年   24篇
  2021年   28篇
  2020年   17篇
  2019年   25篇
  2018年   9篇
  2017年   19篇
  2016年   20篇
  2015年   26篇
  2014年   58篇
  2013年   37篇
  2012年   44篇
  2011年   50篇
  2010年   51篇
  2009年   48篇
  2008年   48篇
  2007年   40篇
  2006年   33篇
  2005年   31篇
  2004年   28篇
  2003年   19篇
  2002年   17篇
  2001年   17篇
  2000年   20篇
  1999年   17篇
  1998年   17篇
  1997年   9篇
  1996年   13篇
  1995年   20篇
  1994年   8篇
  1993年   6篇
  1992年   13篇
  1991年   6篇
  1990年   13篇
  1989年   10篇
  1987年   2篇
排序方式: 共有876条查询结果,搜索用时 0 毫秒
141.
藻类生长有一个适合的流速,即临界流速,在其他条件相同的情况下,处于临界流速状态的藻类生长更快.在藻类生长模型中,引人流速影响函数,数值模拟嘉陵江重庆城区磁器口河段2007年2月-7月的藻类生长情况,模拟结果与实测结果吻合较好.研究结果表明.流速在0.03-0.05 m/s比较适合研究河段的藻类生长.  相似文献   
142.
为了探讨春季藻类快速生长的机制,研究较低温度下氨氮对淡水浮游藻类生长及群落结构变化的影响,对南开大学新开湖水体藻类进行了室内生态模拟试验研究.在10℃、125μmol·m·s-1光强条件下,培养液中氨氮最终浓度设置为1.0、1.5、2.0、2.5、3.0mg·L-1和对照组(不添加氨氮),每隔1~2天加入氨氮至初始设定值,培养时间为26d.结果表明,浮游藻类在1.0mg·L-1组生长最好,最大生长密度为1.53×105cells·L-1,高于对照组;浮游藻类在高于2.0mg·L-1处理组中生长明显受到抑制,抑制作用随着氨氮浓度的增大而增大,其中3.0mg·L-1处理组的最大生物量仅为5.4×104cells·L-1.随着培养时间的进行硅藻逐渐取代绿藻而成为绝对优势藻,随着藻类的生长,粗刺四刺藻(Treubaria crassispina)在所有处理组中由优势种而逐渐消失,近缘针杆藻(Saffinis affinis)和新月藻(Closterium lunula)在培养后期逐渐成为优势种,但在不同氨氮浓度下表现出不同生长密度.除1.0mg·L-1处理组外,其它处理组中的物种多样性指数差异不显著(p>0.05).氨氮影响浮游藻类的生长,影响优势种的变化,并且对浮游藻类的群落结构变化有一定的影响.  相似文献   
143.
混合层深度对藻类生长的影响研究   总被引:2,自引:10,他引:2  
陈洋  杨正健  黄钰铃  张平  刘德富 《环境科学》2013,34(8):3049-3056
三峡水库蓄水后,支流库湾频繁暴发水华.为研究水华暴发关键因子,以临界层理论为指导,于2012年初冬季,在香溪河野外观测站建立围隔实验系统,研究水体混合对藻类生长的影响机制.围隔水下深度按梯度布设,表底掺混均匀,并注入由浮游动物网过滤的低Chl-a浓度的香溪河河水.结果表明,Zeu/Zmix(真光层深度与混合层深度之比)>1的围隔藻类生长迅速并暴发水华,Chl-a浓度最高达到90 mg·m-3,反之生长缓慢.临界层理论适用于本实验,Zeu/Zmix也存在一个临界值,低于临界值浮游植物生长会受光限制而不易暴发水华;在临界层理论的基础上,分析得藻类净初级生产力与Zmix存在负相关关系,即Zmix越小藻类净初级生产力越大.  相似文献   
144.
为了研究水库生境扰动对藻类水华的作用机制,以中度扰动理论为基础,结合藻类群落生境选择学说和藻类生态功能组,开展了不同温度扰动周期、相同扰动幅度下藻类多样性变化特性和群落结构演替特征的室内控制实验.结果表明:1适度的扰动会促进藻类的生长且增加其多样性.中度扰动组Δ22℃/48 h藻类生物量最大,但多样性最高,不存在绝对占优藻种,而高频次扰动组Δ22℃/24 h生物多样性较小,但可降低藻类生物量.2温度的周期性变化对浮游藻类群落的演替有明显的影响,优势种也呈现一定的差异性.藻类优势功能组演替基本规律为:X_1(小球藻)→J(栅藻)→S_1(席藻)或X_2(衣藻),群落结构呈现出C/CR型藻类先行占优向R型演替的趋势.高温扰动频繁时,R型藻类(S_1)明显占优;无扰动或低扰动时,群落结构组成特点以C/R策略为主.适度的扰动组Δ22℃/48 h形成了多种生长策略的藻类共存的格局,且耐受高温胁迫的S策略藻类(L_0)开始出现.  相似文献   
145.
基于计算流体力学(CFD)方法,数值模拟了不同温度梯度条件下扬水曝气器外围流场及藻类浓度场,并与实际工程运行数据进行对比.当水深为80m、水面下30m内的温度梯度从0.17℃/m增加到0.73℃/m时,核心控藻区域的半径从100m增加到150m,控藻区域百分比从25.16%增大到28.60%,藻类完全混合的时间分别从16d增加到24d.在稳定条件下,藻类在补偿点以下的停留时间均大于48h,基本不受温度梯度的影响,藻类生长受抑制.藻类浓度模拟结果与实际工程运行结果吻合良好.推荐水库中扬水曝气器合理设计间距为250m.  相似文献   
146.
太湖藻类状况分析   总被引:13,自引:0,他引:13  
对太湖藻类发生的内因、外因作了阐述,就有关的环境因子与藻类的关系作了相关分析,对太湖藻类的监测工作提出了建议。  相似文献   
147.
珠江口浮游藻类生态及与关键水质因子分析   总被引:10,自引:1,他引:10  
从宏观上和特殊性两方面对其进行浮游藻类生态发生与关键水质因子 (盐度、DO、PO4 P、NO3 N)关联的研究与总结。得出二者间确有关联 ,在 12个测点站位中 ,C12 站位具有水域特殊性 ,即在C12 测点具有溶解氧超饱和现象 ,溶氧饱和率为 115 % ,中肋骨条藻高达 8.6 9× 10 5L 1,个体百分组成高达 87.4 % ,藻类优势度为92 .3% ,该测点水域处于赤潮状态 ,并导致C12 测点活性磷浓度为最低测值。由于硝酸盐含量很高 ,藻类生长和硝酸盐的特殊对应关系不明显。相关分析显示 ,在整个水域盐度与藻类生长为正相关 ,藻类丰度与最高溶氧也为正相关 ,藻类生长与活性磷和硝酸盐之间乃为负相关  相似文献   
148.
城市供水中藻类去除技术的研究进展   总被引:1,自引:0,他引:1  
日趋严重的水体富营养化已成为全球性的环境问题,藻类及其副产物给传统净水工艺带来了诸多不利影响,增加了水处理难度。本文对饮用水中藻类各种去除技术进行了具体的论述,并系统分析各技术去除效果、局限性,展望了藻类去除技术发展前景。指出目前控制饮用水中藻类污染必须将水源污染综合治理、强化预氧化工艺、优化常规工艺结合起来。  相似文献   
149.
巢湖藻类生物量季节性变化特征   总被引:14,自引:2,他引:14  
在2008年对巢湖浮游藻类的生态分布进行了为期1 a的调查研究,并采用自制"藻类上浮/下沉捕集器"定量研究了水柱中藻类上浮和下沉速率的季节性变化.结果表明,蓝藻为巢湖主要的水华优势群落,但各个季节优势水华种群有所差别,春季鱼腥藻占优势,微囊藻次之;夏、秋两季微囊藻占绝对优势.5月开始,水柱中藻类生物量明显增加;8月份达到最大值,叶绿素含量全湖平均为146.37 mg.m-3.表层沉积物中藻类生物量在9.75~16.24 mg.kg-1之间,最小值出现在夏季,然后逐渐升高,最大值出现在冬季的11月.研究期间(5~10月),水柱中浮游藻类一直存在上浮和下沉现象,上浮速率在总体上呈先上升后下降的趋势,最大值出现在8月初,为0.036 8 mg.(m2.d)-1;下沉速率则呈现先缓慢上升后急剧下降的趋势,最大值出现在9月初,为0.032 1 mg.(m2.d)-1.多元逐步回归统计表明,温度是巢湖藻类生物量变化最为显著的影响因子,其次为总氮(TN)和总磷(TP).  相似文献   
150.
为了解不同区域生态修复后环境因子对浮游动植物群落分布的影响,于2021年1月(竣工后)对南湖A、 B、 C、 D和S区的环境因子及浮游动植物开展调查.结果表明,生态修复区较未修复区水体总氮(TN)、溶解性总氮(DTN)、氨氮(NH+4-N)、硝氮(NO-3-N)、总磷(TP)和溶解性总磷(DTP)浓度显著降低,溶解氧(DO)显著增高(P<0.05).研究区浮游植物种类以绿藻和硅藻为主,浮游动物种类以原生动物和轮虫为主.修复区浮游植物生物量较未修复区低,浮游植物与浮游动物物种数升高.聚类与主坐标分析显示修复区浮游动植物群落差异显著(P<0.05),其中A区和B区游动植物结构较为相似.冗余分析(RDA)结果显示,DO、 NO-3-N、 pH和水温(WT)是影响浮游植物群落分布的主要环境因子;DO、 NO-3-N、 NH+4-N和TP是驱动浮游动物群落分布的主要环...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号