首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3035篇
  免费   359篇
  国内免费   929篇
安全科学   480篇
废物处理   100篇
环保管理   217篇
综合类   2531篇
基础理论   375篇
污染及防治   312篇
评价与监测   254篇
社会与环境   32篇
灾害及防治   22篇
  2024年   44篇
  2023年   106篇
  2022年   156篇
  2021年   186篇
  2020年   154篇
  2019年   155篇
  2018年   115篇
  2017年   117篇
  2016年   125篇
  2015年   156篇
  2014年   334篇
  2013年   219篇
  2012年   197篇
  2011年   241篇
  2010年   168篇
  2009年   182篇
  2008年   199篇
  2007年   219篇
  2006年   166篇
  2005年   156篇
  2004年   109篇
  2003年   98篇
  2002年   77篇
  2001年   75篇
  2000年   57篇
  1999年   51篇
  1998年   70篇
  1997年   60篇
  1996年   61篇
  1995年   47篇
  1994年   46篇
  1993年   36篇
  1992年   39篇
  1991年   35篇
  1990年   40篇
  1989年   25篇
  1988年   1篇
  1987年   1篇
排序方式: 共有4323条查询结果,搜索用时 15 毫秒
211.
2013-2015年上海市霾污染事件潜在源区贡献分析   总被引:6,自引:0,他引:6  
周沙  刘宁  刘朝顺 《环境科学学报》2017,37(5):1835-1842
统计分析2013-2015年上海市每个月不同空气质量等级天数比重,根据HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)后向轨迹模型对3年内的12月份影响上海地区的污染气团进行了综合聚类分析和逐年聚类分析.在综合12次严重霾事件的后向轨迹基础上,结合上海实时公布的PM2.5小时浓度资料,对潜在源贡献因子PSCF(Potential Source Contribution Function)和浓度权重轨迹CWT(Concentration-weighted Trajectory)进行分析与比较,研究重霾期间影响上海PM2.5质量浓度的潜在源区及不同源区对PM2.5质量浓度的贡献差异.结果显示,上海市3年期间12月份霾颗粒物外来源主要输送渠道为西北路径和北方路径,源自于西北方向的气团比重占总气团的50.4%,北方向的气团几乎都经过海洋后进入上海地区.影响上海地区PM2.5质量浓度的潜在源区主要分布在安徽、江苏和山东地区,此外江西北部、浙江北部、河北南部及山西少部分地区也对重霾事件中的污染物颗粒有一定程度的贡献.  相似文献   
212.
该文基于2018-2020年重庆市空气质量监测网络数据,分析了城市站、区域站和交通站CO浓度水平、时间变化规律,研究了CO与大气污染物、气象参数的相关性,并利用Meteoinfo软件对抵达重庆市各片区的轨迹进行聚类分析、潜在源贡献因子分析及浓度权重分析,获得了各片区CO的传输规律及潜在源区贡献特征。结果表明,2018-2020年,城市站和区域站CO质量浓度为下降趋势,交通站呈现上升趋势,CO质量浓度月变化为“U型”特征,日变化为“双峰”特征,区域站峰值时间晚于城市站和交通站,各类型站点均存在明显“周末效应”。城市站CO与其他大气污染物相关性整体强于区域站,交通站CO与其他大气污染物相关性最低。CO质量浓度与风速为负相关关系,与地面气压和温度的相关性不明显。重庆市冬季的气团轨迹主要来自偏东区域,占比70%以上,此外还有少量轨迹较短的偏西区域轨迹,对应CO质量浓度较高。中心城区主要源区位于重庆主城都市区以及川东城市,主城新区主要源区位于重庆主城都市区、泸州、广安、南充,渝东北片区主要源区位于渝东北区域、川东及湖北省恩施州、湖南省张家界等,渝东南片区主要源区来自渝东南片区及湖北省恩施州。  相似文献   
213.
将铝污泥生物填料与台阶型植草沟相结合,构建台阶型生态植草沟系统,现场比较台阶型生态植草沟和常规生态植草沟对路面径流的净化效果.结果表明:在2次降雨(大雨、中雨)事件中,台阶型生态植草沟径流量削减效果优于常规植草沟,径流总量削减率分别为63.04%和55.21%,峰值流量显著降低,峰值时间至少延迟24~30 min;台阶...  相似文献   
214.
根据某化工厂煤气生产工艺流程,研究预防CO气体泄漏引起的火灾、爆炸和中毒事故的监控系统,分析监控系统的工作原理及电路图,对CO监控技术的研究和气体传感器的研制有重要的参考价值.  相似文献   
215.
苏洁  牛奕 《火灾科学》2022,31(1):1-7
为了对木材燃料层流扩散火焰碳黑生成特性进行研究,搭建了基于消光法原理的轴对称层流火焰碳黑浓度测量平台,选用马尾松针、柚木以及红橡木三种典型木材燃料粉碎成针状试样,并堆成直径3.5 cm堆垛,利用酒精引燃后可获得稳定的层流扩散火焰,同时通过电热丝辅助加热延长稳定燃烧。通过对三种典型木材燃料层流燃烧过程的质量损失和火焰碳黑浓度的测量和对比分析,结果显示三种燃料中马尾松针碳黑生成能力最大,这说明木材的碳黑生成能力可能与其碳元素和氧元素的含量有关。  相似文献   
216.
Pb/Zn冶炼废渣中重金属的生物浸出-盐浸处理   总被引:3,自引:0,他引:3  
利用中温嗜热菌对某铅锌冶炼废渣进行生物浸出盐浸处理研究,并根据国家固体废物浸出毒性方法(HJ/T299-2007)对盐浸后余渣进行毒性分析。研究结果表明,在pH 1.5、温度65℃、矿浆浓度5%的优化条件下生物浸出3 d后,废渣中Cu、In、Ga和Zn的浸出率分别达到了91.5%、91.8%、84.9%和93.4%;盐浸生物浸出渣,其浸出液中Ag、Pb浓度分别为7.6和247.5 mg/L,可从废渣中有效回收Cu、In、Ga、Zn、Ag和Pb。生物浸出盐浸处理后余渣约为原渣量的70%;毒性分析浸出液中重金属元素Ag、As、Cd、Cu、Pb和Zn浓度分别为2~3.5、2~3、0.3~0.5、30~50、2~4、20~60 mg/L,低于国家危险废物鉴别标准(GB5085.3-2007)。根据试验结果,提出了针对冶炼废渣资源化、减量化、无害化的生物浸出盐浸联用工艺。  相似文献   
217.
有毒气体危害区域划分之临界浓度标准研究   总被引:9,自引:3,他引:6  
通过研究毒物伤害准则进而界定有毒气体危害浓度,对有毒气体泄漏扩散后的危害区域进行分级划分,以采取相应的防护措施,最大限度的即时有效的减轻有毒气体对人员的伤害.最后,以氯为例,对比其在不同伤害准则下危害区域划分临界浓度标准值,数值差别较大,因此在使用时应根据实际情况加以判断,选择最适当的标准来划分危害区域.  相似文献   
218.
文章论述了家庭生活水的氡浓度水平、生活用水对室内氡的贡献、水的使用过程中室内氡行为以及含氡水的使用与辐射照射剂量的关系等问题。指出家庭生活水的氡浓度高时,是室内氡的一个不可忽视的来源。对氡浓度特别高的家庭用水,建议先用活性炭等进行吸附后再使用。  相似文献   
219.
基于2018年4月15日至4月24日在长江口北港主槽大小潮连续10天的定点水文泥沙观测资料,对枯季期间北港上段河道悬沙浓度的垂线分布特征进行了研究。结果表明:研究区域的悬沙浓度较低,大小潮平均值仅为0.17 kg/m3,悬沙浓度具有大潮显著高于小潮,涨落潮平均浓度接近的特点;水动力则具有大潮明显强于小潮、落潮明显强于涨潮的特点;观测期间的盐度值很低,平均值仅为0.16 psu,盐度的大小潮变化、涨落潮变化以及垂向变化都非常小,盐度密度分层对悬沙剖面影响微弱。在这种动力、泥沙和盐度环境下,大潮期间的悬沙剖面主要为斜线型和指数型;小潮期间的悬沙剖面有斜线型、垂线型和指数型,其中以斜线型占主导。通过Rouse公式拟合发现,大部分的实测悬沙剖面较符合Rouse公式,根据该公式计算得到的悬沙沉降速度介于0.36~2.89 mm/s。Soulsby公式能够对实测的斜线型和垂线型悬沙剖面进行较准确预测,平均误差控制在10%以内。  相似文献   
220.
近年来,长三角地区灰霾天气持续增多,空气细颗粒物污染问题日益突出。基于2013年1月至2015年5月长三角地区及周边缓冲区内共214个空气质量监测站点PM2.5逐时监测数据,运用普通克里金插值方法,从年、季、月尺度上分析了PM2.5的空间分布格局和时间动态变化。结果表明:(1)2 a来,长三角地区PM2.5浓度空间分布明显呈现整体北部高南部低,局部地区略有突出的分布特征;长三角地区PM2.5浓度年均值为57.08μg/m3;其中,江苏省PM2.5的年均值为三省市最高,为65.84μg/m3;其次为上海市,年均值为53.87μg/m3;浙江省PM2.5的年均值较小,为51.53μg/m3。(2)从季节尺度分析,长三角地区PM2.5浓度变化表现出冬春季高,夏秋季低的变化趋势;这与区域内冬季风向来源、降水稀少、气象扩散条件差有着密切的关系; (3)长三角地区月浓度变化大致呈U形分布; 12月份PM2.5浓度最高; 3月份以后, PM2.5浓度开始呈逐步下降趋势;在5~9月份,区域PM2.5处于"U"字的谷底,其中6月份夏收时期秸秆焚烧、气象等因素导致PM2.5浓度有略微升高;进入10月份后迅速攀升,且11、12月份呈现持续升高态势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号