首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   95篇
  国内免费   151篇
安全科学   444篇
废物处理   31篇
环保管理   79篇
综合类   452篇
基础理论   78篇
污染及防治   69篇
评价与监测   60篇
灾害及防治   40篇
  2024年   14篇
  2023年   32篇
  2022年   38篇
  2021年   38篇
  2020年   44篇
  2019年   29篇
  2018年   26篇
  2017年   32篇
  2016年   35篇
  2015年   41篇
  2014年   77篇
  2013年   77篇
  2012年   74篇
  2011年   70篇
  2010年   89篇
  2009年   63篇
  2008年   65篇
  2007年   50篇
  2006年   55篇
  2005年   46篇
  2004年   37篇
  2003年   45篇
  2002年   32篇
  2001年   17篇
  2000年   11篇
  1999年   12篇
  1998年   16篇
  1997年   17篇
  1996年   13篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1986年   1篇
排序方式: 共有1253条查询结果,搜索用时 15 毫秒
951.
分布式光纤传感瓦斯气体系统的研究   总被引:2,自引:0,他引:2  
根据激光吸收光谱技术原理,瓦斯气体分子在一定的波段对光有吸收特性,使光谱具有显示瓦斯的特性,通过比较,反演出瓦斯气体在矿井中的浓度。分布式光纤传感瓦斯气体系统是利用空分复用技术,采用多个气体吸收型光纤传感器,并通过谐波检测技术对瓦斯信号进行处理。试验研究表明,该传感器的精确度和稳定性均可满足实际要求,该系统只有光纤在井下,所有的电子处理设备全部在地面,因此,安全性得到了极大的提高,适用于我国煤矿瓦斯监测预警的在线、实时的快速系统。  相似文献   
952.
生物传感器在环境监测领域的应用   总被引:2,自引:0,他引:2  
樊占春  张静 《四川环境》2010,29(6):133-137
本文简要介绍了生物传感器的原理、特点及分类,着重介绍生物传感器在水、大气、生物等环境监测领域的应用,展望了生物传感器在环保领域的发展方向及前景。  相似文献   
953.
真空断路器是电器设备的保护和控制的重要开关设备。灭弧室真空度会随着真空断路器运行时间而逐渐降低,影响断路器正常工作,所以需要精确观测其变化情况。耦合电容式作为主要的真空度在线监测方法之一,可以有效地测得灭弧室真空度变化。然而电场传感器的插入不可避免的会影响到灭弧室周边电场分布,加大真空度检测误差,从而对电力系统运行造成安全隐患。通过有限元分析软件ANSYS,对加入传感器后不同测量距离下的灭弧室周边电场进行仿真计算。仿真结果表明灭弧室与传感器安全距离范围为50-70mm之间时,对周边电场影响最小。并根据模拟数据分析结果,为消除耦合式电容电场传感器对真空度检测安全隐患,提供了理论依据。  相似文献   
954.
无线传感器网络作为微机电系统、网络和传感器三项技术相结合的产物,是一种全新的信息获取和处理技术,可以广泛运用于各个领域,有着极大的应用前景.本文主要对无线传感器网络的概念、节点结构、网络结构进行了介绍,分析了当前武警部队执行特殊任务的战术需求,提出了几种把无线传感器网络运用到武警部队执行特殊任务现场感知中的方案, ‘并对下一步要进行的研究工作进行了展望.  相似文献   
955.
以蛋白核小球藻(Chlorella pyrenoidosa,CP)为指示生物,96孔微板为暴露载体,污染物对藻的72 h生长抑制率为毒性指标,通过系统地检测蛋白核小球藻的生长曲线和吸收光谱,确定藻细胞密度和683 nm波长处光密度(D683)之间的线性关系,考察不同初始藻密度、照度、暴露时间和暴露体积对藻生长的影响,建立了蛋白核小球藻微板毒性分析方法(CP-MTA法).将CP-MTA法应用于重金属盐、除草剂、杀虫剂以及离子液体等8种化学品对蛋白核小球藻的生长抑制毒性测试,以pEC50为毒性指标,毒性大小顺序为敌草快>CuSO4·5H2O≈CdCl2·2.5H2O>氯化1-甲基-3-辛基咪唑([Omim]Cl)>草甘膦>氯化1-甲基-3-丁基咪唑([Bmim]Cl)>敌敌畏>乐果,与文献结果一致.CP-MTA法由于以微板为反应载体,所需样品少,便于多次平行,数据重复性好.   相似文献   
956.
简要介绍了光化学传感器的基本结构。重点列举了为光化学传感器的发展作出重要贡献的一些有机分子选择性光化学传感器。讨论了这些传感器的设计思想和基本原理,以及它们在环境分析中的应用。  相似文献   
957.
30种离子液体对青海弧菌Q67的毒性效应   总被引:5,自引:1,他引:5  
应用微板毒性分析法系统地考察了30种具有不同烷基链长度、阴离子基团和阳离子骨架(甲基咪唑、二甲基咪唑和吡啶)的“绿色溶剂”离子液体(ionic liquids,ILs)对一种新型淡水发光菌青海弧菌Q67 (Vibrio qinghaiensis sp. Q67)的毒性效应.非线性拟合结果表明,Logit或Weibull函数可有效地表征30种ILs的剂量-效应曲线,其相关系数R>0.98,均方根误差RMSE<0.053;30种ILs对Q67的毒性差异很大,pEC50值在1.01~5.48之间;ILs对Q67的毒性具有烷基链效应,且烷基链上每增加2个碳原子,其pEC50值增加近1倍;ILs的阴离子基团、阳离子骨架及ILs本身的吸光性不显著影响ILs对发光菌Q67的毒性.  相似文献   
958.
为深入了解渭南市街区道路环境颗粒物污染时空分布特征,利用车载颗粒物传感器于2019年3月1日—5月31日对渭南市道路环境空气中PM2.5和PM10浓度开展在线走航测量,分析了影响渭南市道路环境颗粒物污染时空分布的主要因素.研究表明:①渭南市区内所有道路PM2.5平均浓度范围为37.7~51.9 μg/m3,浓度较高路段位于高新区东部和主城区;PM2.5~10(粗颗粒物)平均浓度范围为65.8~119.1 μg/m3,浓度较高路段位于各功能区城郊.②工作日早高峰时段(07:00—09:00)主城区道路环境PM2.5、PM2.5~10污染较非工作日严重,3种类型道路工作日07:00 PM2.5~10平均浓度呈支路(103.5 μg/m3)>主干道(102.1 μg/m3)>次干道(96.9 μg/m3)的特征.③对于高新区和老城区路段,除早晚高峰时段出现PM2.5和PM2.5~10浓度峰值外,凌晨时段渣土车行驶路段、裸地或施工现场周边路段易出现PM2.5~10浓度峰值,其PM2.5~10平均浓度最高达230.9 μg/m3(乐天大街西段的路段Ⅳ).研究显示,工作日早晚高峰时段,特别是早高峰,机动车排放导致渭南市高新区东部和主城区路段的PM2.5污染加重,夜间渣土车行驶导致高新区和老城区靠近城郊路段的颗粒物(PM2.5和PM2.5~10)污染加重.   相似文献   
959.
部分离子液体及其混合物对发光菌的毒性作用   总被引:6,自引:0,他引:6  
离子液体(ILs)因其环境安全和良好的非挥发性而得以广泛应用,尽管其理化性质与工程数据一直在不断扩充,但其可用的毒性及生态毒性数据很少.以青海弧菌Q67为指示生物,应用微板发光毒性测试方法,测定了C6H11BF4N(2S1)、C8H15ClN2(S2)、C8H15BF4N2(S3)、C9H14BF4N(S4)、C9H17BF4N2(S5)、C9H17BrN2(S6)、C11H13BF4N2(S7)、C11H13ClN2(S8)、C12H23BrN2(S9)、C14H27BF4N(2S10)、C14H27ClN(2S11)和C16H31ClN(2S12)等12种ILs对发光菌的发光抑制毒性.结果表明,4种ILs(S9、S10、S11、S12)具有高抑制毒性(pEC50>4.5),而另外8种毒性相对较小(pEC50<3.5).为研究混合ILs的联合毒性,根据单个ILs的剂量-效应关系,构建了两组混合物,即由S9、S10、S11和S12构成的高毒性组(简称H组)以及由S2、S3、S4、S5、S6和S8构成的低毒性组(简称L组)混合物.应用非线性模拟技术与剂量加和(DA)及独立作用(IA)模型对混合物毒性数据进行拟合与预测分析,结果表明,以等效应浓度比法设计的混合物,无论是对于H组的4个混合物还是L组的4个混合物,其联合毒性大小均可用DA模型准确预测.对于均匀试验设计浓度比法设计的混合物,H组的6个混合物的毒性可用DA模型有效预测,而L组的6个混合物由于剂量-效应曲线在低浓度区翘起,其混合物毒性用DA或用IA模型预测均有一定误差.  相似文献   
960.
通过对在同一种原煤上使用液体节煤固硫添加剂前、后锅炉废气的对比测试,分析了加入添加剂后锅炉排放废气中烟尘粒径、烟尘浓度、二氧化硫、氮氧化物浓度等变化的原因及趋势。结果表明,在使用液体节煤固硫添加剂后,锅炉排放废气中烟尘、二氧化硫浓度均有显著降低,氮氧化物浓度基本不变,排放烟尘粒径呈现由较大向较小转化的趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号