首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   50篇
  国内免费   98篇
安全科学   162篇
废物处理   31篇
环保管理   36篇
综合类   277篇
基础理论   46篇
污染及防治   54篇
评价与监测   11篇
社会与环境   18篇
灾害及防治   26篇
  2024年   8篇
  2023年   28篇
  2022年   27篇
  2021年   31篇
  2020年   23篇
  2019年   34篇
  2018年   19篇
  2017年   12篇
  2016年   24篇
  2015年   24篇
  2014年   40篇
  2013年   37篇
  2012年   42篇
  2011年   35篇
  2010年   19篇
  2009年   24篇
  2008年   33篇
  2007年   20篇
  2006年   29篇
  2005年   20篇
  2004年   14篇
  2003年   17篇
  2002年   15篇
  2001年   9篇
  2000年   12篇
  1999年   15篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   10篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
排序方式: 共有661条查询结果,搜索用时 15 毫秒
51.
为全面了解松花江流域不同地形分区内底栖动物群落对水质指标的响应规律,识别不同分区水质指标指示物种的差异,于2016—2018年对松花江流域97个采样点的水质指标〔EC、ρ(DO)、ρ(CODMn)、ρ(NH3-N)、ρ(TN)、ρ(TP)〕和大型底栖动物群落进行调查分析,采用临界指示物种分析法(threshold indicator taxa analysis,TITAN)分别探讨松花江流域山区、丘陵区和平原区水质指标的生态阈值,当污染物浓度超过负响应阈值时敏感种密度降低,当超过正响应阈值时耐受种也会受到明显影响,底栖动物群落结构会发生显著变化.将TITAN法所得的负响应阈值作为触发底栖动物群落发生变化的最低值,正响应阈值为底栖动物群落的耐受极限值.结果表明:①松花江流域水质指标在不同地形分区内的阈值不同,除ρ(DO)和ρ(CODMn)外,其他指标负响应阈值均表现为山区 < 丘陵区 < 平原区,ρ(DO)则表现相反,ρ(CODMn)在丘陵区出现最高阈值(5.46 mg/L)、山区出现最低阈值(4.01 mg/L).除ρ(DO)以外,其他指标的正响应阈值均呈山区 < 丘陵区 < 平原区的趋势,ρ(DO)正响应阈值的变化趋势则与之相反.②松花江流域内超过50%的采样点水质指标值均超过其负响应阈值,超出正响应阈值的采样点比例在6%~40%之间,说明流域受到一定的干扰,但干扰程度不严重.③同一物种在不同地形分区内对水体理化指标的指示方向可能相反.萝卜螺属在丘陵区为ρ(NH3-N)的正响应指示物种,在平原区则转变为负响应指示物种;短沟蜷属在丘陵区为ρ(TN)和ρ(TP)的正响应物种,在平原区则转变为负响应物种.研究显示,大型底栖动物群落结构的分布特征是影响水质指标阈值指示物种识别的主要原因,而不同分区的自然地理状况、栖境状况和水质状况则是造成大型底栖动物群落结构分布差异的主要因素.   相似文献   
52.
我国南方水稻产地镉环境质量类别划分技术   总被引:1,自引:2,他引:1  
窦韦强  安毅  秦莉  林大松  董明明 《环境科学》2020,41(12):5562-5570
针对我国耕地质量类别划分技术及方法体系不完善的现状,提出应用物种敏感性分布法(SSD)基于不同保护率建立"优先保护类、安全利用类和严格管控类"的土壤镉划分阈值,并对其合理性和科学性验证.结果表明,我国南方水稻产地土壤p H、土壤有机质(SOM)和阳离子交换量(CEC)对水稻富集镉的影响均达到了极显著水平(P <0.01),并由其构建的三因子生物有效性模型可解释水稻富集系数62.0%的变异;水稻对镉的SSD曲线表明,不同水稻品种对镉的敏感性差异明显,主要与其基因型相关;依据SSD曲线基于保护率为80%和5%推导出我国南方水稻产地"优先保护类和严格管控类"的土壤镉划分阈值分别为0.26 mg·kg-1和1.67 mg·kg-1,且当土壤镉≤0.26 mg·kg-1时划分为优先保护类耕地,土壤镉≥1.67 mg·kg-1时划分为严格管控类耕地,土壤镉介于0.26~1.67 mg·kg-1时划分为安全利用类耕地,并通过134组独立数据验证其具有一定合理性和科学性.本研究表明应用S...  相似文献   
53.
在移动过滤模型实验装置上,对过滤工艺中过滤介质输送和过滤影响因素两个方面进行实验。结果表明:介质清洗、床层高度、滤速、过滤介质和循环量等因素都对过滤效果产生影响。  相似文献   
54.
全国及区域性人均耕地阈值的探讨   总被引:36,自引:3,他引:36  
论文首先指出并不存在联合国粮农组织提出的人均耕地面积阈值;继而认为人均耕地面积阈值具有鲜明的时间和空间特征,需要有明确的前提条件。为此按1995年的耕地实际生产力(在耕地面积中扣除菜地和经济作物用地面积),以人均400kg、450kg、500kg粮食需求量的生活标准,提出就全国平均而言,人均耕地面积不应小于0.092hm2、0.104hm2、0.115hm2(可以看作当前的人均耕地面积阈值)。根据2010、2030、2050年我国的预期耕地面积以及可能达到的生产能力,按人均400kg、450kg、500kg粮食需求量的生活标准,就全国平均而言,2010年人均耕地面积不应小于0.059hm2、0.067hm2、0.074hm2(可以看作近期的人均耕地面积阈值);2030年人均耕地面积不应小于0.052hm2、0.058hm2、0.064hm2(可以作为中期的人均耕地面积阈值);2050年人均耕地面积不应小于0.046hm2、0.052hm2、0.058hm2(可以作为远期的人均耕地面积阈值)。  相似文献   
55.
为了解新乡市地表水中HCHs和DDTs的分布特征及生态风险,采集新乡市18个地表水样并测定其中HCHs和DDTs的含量,采用概率密度函数重叠面积法和安全阈值法评价了HCHs和DDTs的生态风险.结果表明,新乡市地表水中HCHs和DDTs的质量浓度范围分别为1.28~49.2 ng·L-1和0.42~12.3 ng·L-1,与世界各地的地表水中HCHs和DDTs残留质量浓度相比属于中等污染水平.异构体比值表明HCHs污染的主要来源是林丹的使用,而DDTs的残留来源于工业品DDTs的使用.生态风险评价基于DDD、γ-HCHs和p,p'-DDT的暴露浓度以及相应的毒性数据,概率密度函数重叠面积法和安全阈值法均表明了这3种有机氯农药中DDD的风险最大,其次是γ-HCHs,p,p'-DDT的生态风险最小;安全阈值法进一步表明DDD、γ-HCHs和p,p'-DDT超过影响10%水生生物的概率分别为10.2%、5.94%和0.01%.  相似文献   
56.
57.
水稻分布范围与面积监测可为水稻产量估算、农业水资源消耗和评价等提供科学决策依据。目前,对华北单季稻稻作区水稻识别的研究尚少,寻找一种适用该区域的水稻识别方法具有一定的研究价值。以天津为研究范围,以Sentinel-1和Sentinel-2为数据源,基于水稻后向散射系数时序变化特征和水稻不同生长期光谱特征,分别对研究区水稻进行了提取,并对两者的提取精度进行了比较。得出以下结论:(1)利用Sentinel-1移栽期、拔节期、抽穗期影像组合可识别水稻,水稻生产者精度和用户精度均在90%以上;(2)在水稻移栽期和成熟期,Sentinel-2近红外、短波红外和可见光红光等波段组合易识别水稻,水稻生产者精度和用户精度均在96%以上,成熟期B12+B8+B4波段组合效果最优;(3)基于水稻成熟期的Sentinel-2 B12+B8+B4波段组合,采用支持向量机法提取水稻是一种适用于华北单季稻的识别方法。运用该方法计算出研究区2016、2018和2021水稻种植面积分别为399.04、586.67和764.55 km2,5 a增加365.51 km2,符合天...  相似文献   
58.
59.
为提升混杂工况下校车儿童乘员的安全性,对常开式安全气囊的保护性能开展优化设计。首先,明确6、12岁儿童的损伤阈值;然后,基于台车试验数据,构建与验证校车仿真模型,并搭建校车—常开式安全气囊耦合模型;最后,基于校车碰撞工况与儿童年龄的不同组合,建立6种混杂工况,决选常开式安全气囊的主要设计参数为优化因素,以加权伤害指标为优化目标,构建响应面代理模型。结果表明:利用改进型NSGA-Ⅱ算法,权衡确定上部拉带长度0.258 8 m,安装点高度0.385 6 m,泄气阀开启压力1.199 6×105 Pa,泄气阀开度1.98为最优配置;混杂工况下,具备最优配置的常开式安全气囊可最大限度地降低儿童乘员的损伤风险。  相似文献   
60.
《工业安全与环保》2006,32(1):11-11
不锈钢用具很普遍,清洗时应注意不破坏用具表面的光泽,如果用钢丝刷蘸清洁荆擦会造成用具表面的刮痕;若用清洁布很难顺利驱除顽垢。有个一举两得的方法,既能很好除垢叉不造成刮痕,就是用做菜剩下的萝卜屑或黄瓜屑蘸清洁荆擦拭这些用具,然后用清水清洗,您会发现不锈钢的用具依旧光亮如新。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号