首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   70篇
  国内免费   31篇
安全科学   342篇
废物处理   29篇
环保管理   45篇
综合类   247篇
基础理论   22篇
污染及防治   20篇
评价与监测   37篇
社会与环境   3篇
灾害及防治   26篇
  2024年   3篇
  2023年   17篇
  2022年   35篇
  2021年   25篇
  2020年   22篇
  2019年   14篇
  2018年   19篇
  2017年   21篇
  2016年   17篇
  2015年   20篇
  2014年   55篇
  2013年   42篇
  2012年   30篇
  2011年   41篇
  2010年   32篇
  2009年   30篇
  2008年   36篇
  2007年   36篇
  2006年   46篇
  2005年   29篇
  2004年   20篇
  2003年   27篇
  2002年   15篇
  2001年   17篇
  2000年   14篇
  1999年   11篇
  1998年   20篇
  1997年   19篇
  1996年   12篇
  1995年   14篇
  1994年   6篇
  1993年   10篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
排序方式: 共有771条查询结果,搜索用时 15 毫秒
11.
针对现有石灰石-石膏湿法脱硫技术难以满足日趋严格的煤电行业脱硫超低排放的要求,提出了一种节能型湍流管栅高效脱硫技术的工艺。技术开发基于石灰石-石膏湿法烟气脱硫技术,旨在提高空塔脱硫效率,降低能耗。文章阐述了该装置安装在烟气量10 000 m~3/h的中试装置上进行高效脱硫中试研究。通过不同SO_2浓度、不同液气比、不同流速、不同工况条件等的对脱硫效率影响的试验,说明节能型湍流管栅高效脱硫技术中试研究具有脱硫效率高、能耗降低的技术特点,结果表明,当SO_2入口浓度为6 050 mg/m~3,脱硫效率由空塔时的96.98%提高到99.45%,提升了2.47个百分点;湍流管栅提效装置不仅适用于低SO_2入口浓度的工况,对于中高硫分的工况同样适用;加湍流管栅提效装置后,在相同有效液气比条件下,脱硫效率与空塔相比提高1%~2%,标志着该技术已具备工程化示范的条件。  相似文献   
12.
针对取芯过程瓦斯解吸受煤芯的温度影响不明,造成煤层瓦斯含量测不准的问题,开展对取芯过程煤芯温度分布特征研究。采用自主研制的取芯管自动测温装置在赵固二矿原生结构煤层(f=1.71)进行深度20 m的取芯试验,获得取芯管管壁温升变化规律,变化曲线分为4个阶段:缓慢上升、加速上升、减速上升、缓慢下降阶段;应用COMSOL建立含瓦斯煤传热模型,将管壁的温度变化设置为边界条件,模拟取芯过程煤芯与管壁之间的热交换。结果表明:在取芯时间30 min内,煤芯平均温度快速上升,之后上升速度趋于平稳;在煤芯内,相同时刻,等间距的轴向与径向距离,径向较轴向的温度梯度较大,径向传导快于轴向传导;取芯过程煤芯径向温度Ta与径向距离d、时间t满足指数函数关系。研究结果可为测定取芯过程煤芯的瓦斯损失量提供参考依据。  相似文献   
13.
针对内壁含缺陷的连续管冲蚀磨损严重、易失效的问题,基于冲蚀理论和液-固两相流,建立了含缺陷连续管内 壁冲蚀模型。利用Grant和Tabakoff模型求解砂砾冲蚀速率,借助实验数据验证了CFD数值模型。利用该模型研究了连续 管内壁周向均布缺陷数量及缺陷形状参数(深度、长度和宽度)对连续管内壁含缺陷时的冲蚀影响。研究表明:完整连 续管与含1个缺陷时对比,最大冲蚀率增加了4.5倍。对于深度或宽度较小的缺陷,冲蚀更为严重,缺陷会在冲蚀作用下 迅速加深或变宽,增速下降较快。含大长度缺陷连续管在压裂中会被加速损坏。  相似文献   
14.
为了探究地下储气库井筒管柱裂纹缺陷对井筒寿命的影响,采用随机裂纹扩展融合概率密度演化法(Probability Density Evolution Method, PDEM)模型对含裂纹缺陷井筒进行寿命可靠性预测。通过修正后的裂纹特征向量,采用总变差减小(Total Variation Diminishing, TVD)差分格式求解出特征值概率密度函数,可得到其疲劳寿命可靠性,研究不同裂纹长度和井筒内压下,井筒管柱裂纹处最大应力和应力强度因子K的变化规律,并对其模型预测进行性能分析。结果表明:概率密度演化法得到的井筒裂纹尺寸曲线与Monte Carlo法的结果吻合性良好,且概率密度演化法计算简单、精度高,模型预测误差率在11%以内;最大应力及应力强度因子K随着井筒压力、裂纹长度的增加而增大,当最大应力超过材料屈服强度350 MPa后,则增长趋势逐渐减缓直至趋于平稳。  相似文献   
15.
为了减小氢氧爆轰激波管产生的高温高压高速膨胀气流对反应室的侵蚀作用,提高激波管安全性,更好地利用爆轰驱动能力,需要对反应室内流场进行优化设计.借助Fluent软件,基于压力基PISO算法和标准K-ε湍流模型,采用氢氧19步基元反应模型和Peng-Robinson真实气体状态方程,对中高压条件下反应室内氢氧爆轰的形成与发展过程进行了数值模拟,研究了反应室内惰性气体组分及配比、初压等因素对流场特性的影响.结果表明:不同的惰性气体对爆轰参数有不同的影响;在0.2 MPa,298 K初始条件下,混合气体内增加氮气的体积分数可以降低爆温,氩气有助于降低爆速,而氦气会提高爆压和爆速;高含量的氩气和氦气可以使氢氧正常爆轰,但氮气体积分数达到62.5%时较难爆轰,在70%时氢氧爆轰过程无法形成.在0.1~1 MPa范围内,对2H2∶O2∶7Ar混合气体,爆轰压力与初压成正比例关系.在298~373 K范围内,保持2H2∶O2∶5N2混合气体初压为0.2 MPa,初温增加至323 K时,化学反应速率加快使爆压和爆温升高,之后提高初温,单位体积反应物浓度下降使爆压和爆温下降.  相似文献   
16.
为研究管道结构对氢-空预混气体爆炸特性影响,采用实验与数值模拟相结合的方法,分析不同管道结构内氢-空预混气体燃爆时火焰传播进程、爆炸压力、湍流动能变化及流场分布.结果表明:90°弯管对氢-空预混气体爆炸强度增强作用明显高于T型分岔管和直管.火焰阵面在结构突变处褶皱变形较明显,并出现大尺度强湍流和涡团,气团脉动速度与湍流...  相似文献   
17.
结构下部空旷,上部挡风墙承担的风荷载对结构下部产生较大作用。我国规范没有对该类结构及其顶部透气性A型架的风参数作具体规定。为解决工程设计中风参数取值问题,进行了刚性模型风洞试验研究,得到了不同工况下挡风墙、A型架、管柱的体型系数及挡风墙的阵风系数,分析了风机、周围建筑物、风向角对相关风参数的影响,给出了相关参数的建议值。并将试验结果与数值模拟计算结果进行了对比分析,结果表明,二者吻合较好,研究结果为工程设计提供了基础资料,可供同类工程参考。  相似文献   
18.
曾利  李雪敏  杨欢  龚倩倩  刘欣  韦佳依  邓放 《环境化学》2022,41(6):2143-2145
建立高效液相色谱-二极管阵列检测器-电雾式检测器(HPLC-DAD-CAD)法同时测定川佛手中香叶木苷、橙皮苷、5,7-二甲氧基香豆素、柠檬苦素和诺米林等5个成分含量的方法.研究结果表明,川佛手中香叶木苷、橙皮苷、5,7-二甲氧基香豆素、柠檬苦素和诺米林分别在106.6—533 ng(r=0.9998)、102.4—512 ng (r=0.9999)、103.0—515 ng (r=0.9999)、82.2—411 ng (r=0.9996)、127.6—638 ng(r=0.9994)范围内线性关系良好,平均加样回收率分别为105.04%、107.19%、98.39%、105.01%、94.33%,RSD值分别为1.96%、1.67%、2.72%、2.39%、0.45%.8批样品中橙皮苷、香叶木苷、5,7-二甲氧基香豆素、柠檬苦素和诺米林的百分含量分别为0.026%-0.168%、0.036%-0.081%、0.064%-0.256%、0.016%-0.084%、0.06 8%-0.116%.建立的HPLC-DAD-CAD测定5个成分含量的方法稳定可靠,重复性好,可为川佛手的质量控制...  相似文献   
19.
目的 研究管道内部流速和浸没深度对细长柔性悬臂管道振动特性的影响规律。方法 通过位移传感器采集管道振动位移时程,计算管道振幅、时频特性、相位变迁和振动频率,分析内流在输流过程中所激发的管道振动失稳特性。结果 随着内流流速的增加,垂直悬臂管会经历静态、前失稳和后失稳3个不同状态。管道振幅随内流流速的增加而明显增大,但振动频率只是缓慢上升。随着管道浸没深度的增加,管道振动失稳整体减弱。结论 内流流速和浸没深度均是影响管道振动失稳特性的关键因素。  相似文献   
20.
不对称氧化铝膜管的微滤性能研究   总被引:2,自引:0,他引:2  
采用熔模离心法制备的不对称氧化铝微滤膜管的孔径沿径向呈样度分布,控制层孔径均匀。最可几孔径为0.05μm,最大孔径为0.1μm的管能滤原液中全部的细菌,获得完全无菌的水,但过滤速率太慢,最可几孔径为0.1μm,最大孔径为0.2μm、最大孔径0.3μm。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号