首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   77篇
  国内免费   279篇
安全科学   37篇
废物处理   14篇
环保管理   32篇
综合类   521篇
基础理论   42篇
污染及防治   46篇
评价与监测   46篇
社会与环境   4篇
灾害及防治   10篇
  2024年   29篇
  2023年   63篇
  2022年   83篇
  2021年   83篇
  2020年   72篇
  2019年   49篇
  2018年   30篇
  2017年   30篇
  2016年   16篇
  2015年   13篇
  2014年   48篇
  2013年   17篇
  2012年   22篇
  2011年   19篇
  2010年   12篇
  2009年   14篇
  2008年   15篇
  2007年   11篇
  2006年   19篇
  2005年   18篇
  2004年   10篇
  2003年   19篇
  2002年   10篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
排序方式: 共有752条查询结果,搜索用时 203 毫秒
721.
2015~2017年上海郊区大气新粒子生成特征   总被引:3,自引:3,他引:0  
本研究利用扫描电迁移率粒径谱仪(SMPS)对上海郊区2015~2017年期间大气新粒子生成进行长期连续观测,结合气象要素、气态污染物和PM_(2.5)化学组分等数据,分析上海郊区新粒子生成特征.结果表明,上海郊区新粒子生成天(NPF)为172 d,占有效天数(942 d)的18. 3%;其中典型新粒子生成天(Event)和新粒子增长-缩小天(Shrinkage)分别为150 d和32 d;NPF天占比春、夏季最高,秋季次之,冬季最低.高温低湿、太阳辐射强、风速大和降雨量少的气象条件有利于新粒子生成;南风、西南风和西风期间Event天占比高,气团主要来自环太湖流域植被覆盖和农业种植区,而Non-NPF和Shrinkage天主导风向为东北、东到东南风.与非新粒子生成天(Non-NPF)相比,Event天各季度SO_2和O_3均高,表明气态硫酸和光化学反应为新粒子生成的关键因素; PM_(2.5)浓度并不均低于Non-NPF天,但PM_(10)值均更高,可能与多相光催化反应有关.Shrinkage天除O_3外,其他污染物浓度均最低,较低的气态前体物导致新粒子增长程度有限.PM_(2.5)化学组分显示,Event天NH_4~+、SO_4~(2-)和NO_3~-无机组分秋季平均浓度高于Non-NPF天,其他季节则相反;有机碳各季节平均浓度均高于Non-NPF天; Shrinkage天各组分浓度最低,但春、夏、冬季有机碳占比均高于Non-NPF天;因此有机物在上海郊区新粒子生成及增长过程中有重要贡献.  相似文献   
722.
洱海流域稻鸭共作对稻田温室气体排放和水稻产量的影响   总被引:5,自引:0,他引:5  
稻季是水旱轮作生态系统温室气体排放的主要时期,探索有效措施实现稻季温室气体减排和水稻增产已成为当前研究的热点.稻鸭共作是减少稻季温室气体排放的有效措施之一,而确定合理的稻鸭共作密度对确保洱海流域水稻产量基础上实现温室气体减排具有重要意义.该研究通过设置不同稻鸭共作密度试验,采取密闭静态箱—气相色谱法研究了稻鸭共作对温室气体排放规律、排放量及全球增温潜势(GWP)的影响.结果表明:水稻生育期,CH_4和N_2O均在分蘖期和结实期出现排放峰;CH_4排放通量、累计排放量和总排放量大小均为常规处理(CT)低密度鸭处理(LDD)高密度鸭处理(HDD)空白处理(CK),而N_2O为HDDLDDCTCK.与CT相比,CK、LDD、HDD的CH_4排放总量分别降低45%、18%、25%,N_2O排放总量分别降低8%、增加11%和37%,温室气体综合增温潜势分别降低41%、14%、17%.田面水DO、NH~+_4-N、NO~-_3-N及土壤温度是引起温室气体CH_4和N_2O排放差异的主要因素.不同处理的水稻产量为LDDCKCTHDD.合理的稻鸭共作密度降低CH_4排放,增加N_2O排放,减缓全球增温潜势,提高了水稻产量.兼顾水稻产量和温室气体减排效果,LDD处理综合效益最好.  相似文献   
723.
以山东省某化工企业为研究对象,采用气袋法对企业正常工况条件下有组织和无组织排放点进行了样品采集,使用车载气相色谱/飞行时间质谱(GC-TOF-MS)对企业排放的VOCs进行了定量分析.结果表明,企业的有组织和无组织排放VOCs浓度范围分别为0.562~9.629,0.789~1.212mg/m3,两种情况下排放浓度较高的10种VOCs的物质截然不同,但无组织检出浓度较高的物质都在有组织总排放口中检出.采用3种方法分别估算了企业排放VOCs的臭氧生成潜势(OFP),根据OFP值筛选出企业十大优控污染物,主要为芳香烃和含硫/氧有机物.通过化学理论分析和量子化学分子模拟计算出分子的最低空轨道与自由基的最高占有轨道的能量差,发现VOCs更容易跟甲基自由基反应形成长链烷烃和芳香烃,与检测出的优控VOCs污染物相一致.  相似文献   
724.
选取北京市地区典型生物质燃料(玉米芯、玉米秆、黄豆秆、草梗、松木、栗树枝、桃树枝)以及民用煤(烟煤、蜂窝煤)在实验室内进行了模拟燃烧实验,对燃烧产生的颗粒物及气体样品进行采集,采用Model 2001A热/光碳分析仪对不同粒径段颗粒物中的有机碳、元素碳进行测定,采用AgilentGC-MS 5977/7890B气质联用仪对燃烧烟气中的挥发性有机物进行分析.研究表明:除蜂窝煤OC、EC的排放因子在2.5~10μm粒径范围内达到最大,其他8种固体燃料燃烧产生的OC、EC的排放因子最大值均在0~2.5μm粒径范围内.薪柴(栗树枝、桃树枝、松木)、秸秆(玉米芯、玉米秆、黄豆秆、草梗)和民用煤(蜂窝煤、烟煤)3类物质燃烧排放VOCs的物种分类差异较大.薪柴和民用煤燃烧排放的卤代烃以及含氧有机物的质量分数明显高于秸秆的质量分数;在同一类别中VOCs物质分布趋势一致.3种薪柴平均总VOCs的排放系数为2.02g/kg,4种秸秆平均总VOCs的排放系数为6.89g/kg,2种民用煤平均总VOCs的排放系数为2.03g/kg,秸秆类的排放因子最大.玉米芯、玉米秆、黄豆秆和草梗的臭氧生成潜势较高,而栗树枝、桃树枝、松木、烟煤以及蜂窝煤的臭氧生成潜势较低,且分布类似.烯烃类、烷烃类、芳香烃类是固体燃料燃烧臭氧生成潜势贡献较大的VOCs物质.  相似文献   
725.
选取3个典型钢结构制造业企业为研究对象,以USEPA Method 18固定源标准采样方法为基础,对底涂工序、面涂工序和常温烘干工序无组织排放的挥发性有机物(volatile organic compounds,VOCs)进行采集,所采集的样品通过自动进样器进入预浓缩仪,预浓缩后在氦气推动下进入GC/MSD,进行VOCs浓度及组分特征的测定,并以此分析该行业VOCs的排放特征、臭氧生产潜势和二次有机气溶胶生成潜势。结果表明:底涂工序、面涂工序、常温烘干工序总挥发性有机物(total volatile organic compounds,TVOC)浓度分布区间分别为366. 99~1057. 05,355. 97~1048. 69,495. 04~1179. 70 mg/m3;该行业臭氧生成潜势为(4. 12±2. 61) g/g;二次有机气溶胶生成潜势为(2. 39±2. 00) g/g。  相似文献   
726.
邯郸市PM_(2.5)中水溶性无机离子污染特征及来源解析   总被引:4,自引:1,他引:3  
本研究通过对邯郸市环境空气中PM2.5样本进行采集和成分检测,分析了该地区PM2.5中水溶性无机离子的污染特征,并结合气象要素(风速、温度)、气态污染物(O3、NO2、SO2、CO)、SOR(硫氧化率)、NOR(氮氧化率)对其主要来源进行了解析.研究结果表明:总水溶性无机离子(TWSII)浓度季节变化特征明显,秋、冬季高于春、夏季.SO2-4、NO-3、NH+4是PM2.5中主要的水溶性无机离子,在TWSII中所占的比例为夏(93.2%)冬(85.6%)秋(85.5%)春(84.0%).春、夏、秋三季PM2.5呈酸性,冬季显碱性.此外还分析得到,SO2-4在四季中均以(NH4)2SO4的形式存在.NO-3在冬季以NH4NO3的形式存在,其余季节中以NH4NO3、HNO3等共存.绝大部分Cl-在冬季以NH4Cl的形式存在,其它季节中以NH4Cl、KCl等的形式存在.均相反应是SO2-4的主要生成途径,夏、冬季也伴随有非均相反应.NO-3的生成以均相反应为主(春、夏、秋),在冬季均相反应与非均相反应同时存在.应用因子分析法解析出4个主因子,其中,工业、燃煤、交通、生物质燃烧等综合源是PM2.5中水溶性无机离子的主要来源.  相似文献   
727.
基于黄冈市城区大气挥发性有机物(VOCs)离线采样数据和常规空气污染物、气象在线监测数据,分析了黄冈市大气VOC组分和体积分数特征,并利用正交矩阵因子分解(PMF)模型和耦合MCM机制的光化学反应箱式模型(PBM-MCM)分别分析了臭氧(O3)污染高发期VOCs的来源及臭氧生成敏感性.结果表明,φ(TVOCs)平均值为(21.57±3.13)×10-9,且呈现出冬春高、夏秋低的季节性特征,其中烷烃(49.9%)和烯烃(16.4%)的占比最大.PMF解析结果显示黄冈市大气VOCs主要来源为:燃料燃烧源(27.8%)、机动车排放源(19.9%)、溶剂使用源(15.7%)、工业卤代烃排放源(12.1%)、化工企业排放源(10.5%)、自然源(7.8%)和柴油车排放源(6.2%).在人为源中,溶剂使用、燃料燃烧和化工企业排放的VOCs对大气环境中O3生成的贡献较大,贡献了O3生成的60.9%,故对O3污染防控应优先管控这3种人为源.通过相对增量反应性(RIR)和经验动力学方法(EKMA)曲线分析,观测期间黄冈市O3生成处于VOCs控制区,且间/对-二甲苯、乙烯、1-丁烯和甲苯等VOCs对O3生成比较敏感,应重点削减以上VOCs的排放.  相似文献   
728.
臭氧污染在全国呈加剧态势,在非重点区域和非重点城市其相关研究薄弱.在湛江市选取3个采样点,使用苏玛罐和2,4-二硝基苯肼(DNPH)吸附管采样,并利用气相色谱-质谱/氢离子火焰检测器(GC-MS/FID)和高效液相色谱(HPLC)分析了101种挥发性有机物(VOCs),分析其主要组分和变化特点,计算VOCs的臭氧生成潜势(OFP),并利用正定矩阵因子分解模型(PMF)进行源解析.结果表明,采样期间湛江市φ(TVOCs)平均值为1.28×10-7,其中OVOCs占比最高,为52%,其次为烷烃(36%)、烯烃(7%)、卤代烃(2.42%)、芳香烃(1.61%)和炔烃(0.78%).VOCs组分日变化特征表明,芳香烃和烷烃早晚体积分数高而中午低,受光化学反应影响大;而OVOCs在光化学反应强烈的中午体积分数低而傍晚高,表明傍晚采样点附近OVOCs直接排放增多或受到上风向污染源输送的影响.湛江市TVOCs的OFP为3.28×10-7,优势物种为甲醛、1-丁烯、正丁烷、2-丁酮和乙醛.表征气团老化程度的X/E值和气团后向轨迹分析表明,采样期间,当受来自...  相似文献   
729.
黄晴  黄银芝  张珊  金丹  高松  修光利 《环境科学》2021,42(10):4621-4631
为研究上海某石化工业区臭氧来源特征,采用在线监测系统对该工业区O3及其前体物和气象参数展开了为期3个月(2020年6~8月)的同步连续观测.采用TCEQ(Texas Commission on Environmental Quality)区域背景臭氧估算法和主成分分析两种方法研究工业区区域背景和本地生成O3浓度贡献,并将两种方法进行对比分析.结果表明:①观测期间园区主导风向为东南风和东风,平均温度为27.12℃.ρ(VOCs-36)日均值为32.05~240.51μg·m-3,烷烃浓度占比最大;ρ(NOx)日均值为10.15~47.51μg·m-3;ρ(O3)为31.81~144.43μg·m-3.②TCEQ法得出的区域背景O3浓度[ρR(O3)]为32.63~191.13μg·m-3,本地生成O3浓度[ρL(O3)]为16.08~134.25μg·m-3,区域背景占比ω(TCEQ)为32.6%~87.7%.主成分分析计算得出的区域背景[ρPCA-R(O3)]为66.38~219.83μg·m-3;③TCEQ法计算得出的本地生成O3浓度变化基本能够与该园区内臭氧生成潜势的变化对应,两种方法具有良好的吻合效果,经验证结果具有可靠性;④剔除由于站点浓度异常情况带来的计算误差,观测期间区域背景O3占比基本处于75%~95%范围内.综上,园区内O3浓度组成以区域输送为主,应重点关注工业区周边城市的O3污染治理,落实长三角区域联防联控措施.  相似文献   
730.
2019年对沈阳市大气挥发性有机物(VOCs)开展了为期l a的观测,并对得到的53种物种进行浓度特征以及反应活性的研究.结果表明,观测期间沈阳市VOCs平均浓度为65.33 μg·m-3,烷烃、烯烃和芳香烃质量分数分别为62.44%、16.52%和19.32%.浓度排名前10的物种主要是C3~C5的烷烃、烯烃和部分芳香烃,累计占VOCs总浓度的64.13%.大气中烷烃、烯烃和芳香烃浓度均表现为双峰型的日变化特征,峰值分别出现在06:00~08:00和19:00~20:00,最低点出现在14:00~15:00;月变化上,该地ρ(VOCs)分别在12月和5月达到最高值(136.44μg.m-3)和最低值(35.61 μg·m-3);VOCs表现出明显的季节变化特征,即冬季>秋季>夏季>春季,且烷烃、烯烃和芳香烃均随季节表现出增加趋势.通过特征值甲苯/苯(T/B)研究发现,沈阳春季VOCs主要来源于交通源和采暖源,夏季主要来源机动车尾气以及溶剂挥发,秋冬季主要受生物质燃烧和煤燃烧等排放源的影响.通过对反应活性分析,燃烧源是沈阳市控制臭氧污染的关键,丙烯、乙烯和1-己烯是沈阳市大气VOCs中反应活性最高的物种.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号