全文获取类型
收费全文 | 414篇 |
免费 | 77篇 |
国内免费 | 287篇 |
专业分类
安全科学 | 37篇 |
废物处理 | 14篇 |
环保管理 | 33篇 |
综合类 | 532篇 |
基础理论 | 43篇 |
污染及防治 | 58篇 |
评价与监测 | 47篇 |
社会与环境 | 4篇 |
灾害及防治 | 10篇 |
出版年
2024年 | 35篇 |
2023年 | 68篇 |
2022年 | 87篇 |
2021年 | 84篇 |
2020年 | 75篇 |
2019年 | 49篇 |
2018年 | 33篇 |
2017年 | 31篇 |
2016年 | 16篇 |
2015年 | 15篇 |
2014年 | 48篇 |
2013年 | 18篇 |
2012年 | 22篇 |
2011年 | 19篇 |
2010年 | 12篇 |
2009年 | 14篇 |
2008年 | 15篇 |
2007年 | 11篇 |
2006年 | 19篇 |
2005年 | 18篇 |
2004年 | 10篇 |
2003年 | 19篇 |
2002年 | 10篇 |
2001年 | 8篇 |
2000年 | 7篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1989年 | 2篇 |
排序方式: 共有778条查询结果,搜索用时 15 毫秒
751.
湖南地区不同集约化栽培模式下双季稻稻田CH4和N2O的排放规律 总被引:2,自引:0,他引:2
采用静态暗箱-气相色谱法研究了湖南双季稻稻田不施氮(NN)、当地常规(FP)、高产高效(YE)、再高产(HY)、再高效(HE)5种不同栽培模式下温室气体(CH4、N2O)的排放规律.结果表明:水稻生长季CH4累积排放量变化为(206.5±37.5) kg· hm-2(FP,早稻)~(490.5±65.7) kg·hm-2(HE,晚稻),N2O-N累积排放量变化为(0.08±0.05) kg·hm-2(NN,早稻)~(0.326±0.15) kg·hm-2(HY,晚稻).不同栽培模式对CH4和N2O的排放都有显著影响(p<0.05).HE模式CH4排放显著高于其他模式62%~ 87%(p<0.05),尤其是晚稻季节;除NN模式外,其他4种模式间N2O排放差异不显著.冬季休闲期也是CH4和N2O排放的重要时期,分别占全年排放量的9.7%~19.7%和42%~ 62%.CH4主导了稻田不同栽培模式下的综合温室效应,在各模式中均占95%以上.施氮肥提高了作物产量,降低了温室气体强度(GHGI).在5种模式中,YE和HY模式温室气体强度较小,HY模式下仅为(0.97±0.16) kg·kg-1(以每kg产量排放的CO2当量计).因此,与FP模式相比,YE和HY模式既能提高产量和氮肥利用率,也能减缓温室效应;但HE模式排放的温室气体较高,在实际应用前尚需进一步研究. 相似文献
752.
753.
754.
755.
756.
757.
目的 对小样本腐蚀失厚率数据进行数据增强,实现数据扩充,以提升后续分析模型的预测精度,减轻过拟合程度,并提升模型的泛化能力。方法 利用生成对抗网络(Generative Adversarial Networks,GAN)扩充腐蚀失厚率数据,使数据分布更加全面。对生成数据进行降维可视化分析,探究生成数据与原始数据样本的分布规律,分析数据增强合理性,并从多个算法模型、多个评价指标角度对分析预测能力、泛化能力进行评估。结果 生成数据填补了原始数据在样本空间分布的薄弱环节,加入生成数据后,各机器学习算法模型得出的MSE均值为未加入生成数据的61.72%~91.74%,皮尔逊均值为99.01%~113.64%,预测准确度提升,结果关联性更强,模型泛化能力增强。结论 GAN能有效对小样本腐蚀失厚率数据进行增强,数据扩充对分析预测提供正向支持,生成数据不宜多于原始数据,防止扰乱训练样本分布,同时存在生成数据多样性受限的问题。 相似文献
758.
为研究上海某石化工业区臭氧来源特征,采用在线监测系统对该工业区O3及其前体物和气象参数展开了为期3个月(2020年6~8月)的同步连续观测.采用TCEQ(Texas Commission on Environmental Quality)区域背景臭氧估算法和主成分分析两种方法研究工业区区域背景和本地生成O3浓度贡献,并将两种方法进行对比分析.结果表明:①观测期间园区主导风向为东南风和东风,平均温度为27.12℃.ρ(VOCs-36)日均值为32.05~240.51μg·m-3,烷烃浓度占比最大;ρ(NOx)日均值为10.15~47.51μg·m-3;ρ(O3)为31.81~144.43μg·m-3.②TCEQ法得出的区域背景O3浓度[ρR(O3)]为32.63~191.13μg·m-3,本地生成O3浓度[ρL(O3)]为16.08~134.25μg·m-3,区域背景占比ω(TCEQ)为32.6%~87.7%.主成分分析计算得出的区域背景[ρPCA-R(O3)]为66.38~219.83μg·m-3;③TCEQ法计算得出的本地生成O3浓度变化基本能够与该园区内臭氧生成潜势的变化对应,两种方法具有良好的吻合效果,经验证结果具有可靠性;④剔除由于站点浓度异常情况带来的计算误差,观测期间区域背景O3占比基本处于75%~95%范围内.综上,园区内O3浓度组成以区域输送为主,应重点关注工业区周边城市的O3污染治理,落实长三角区域联防联控措施. 相似文献
759.
高新技术产业是知识经济时代的主要支柱产业,其快速发展在为人类带来巨大利益的同时,往往具有更高的孕灾潜势和事故风险。本文分析了高新技术灾害经济问题的特殊性,并提出了减灾防灾应采取的主要措施。 相似文献
760.