首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   138篇
  国内免费   286篇
安全科学   245篇
废物处理   96篇
环保管理   147篇
综合类   761篇
基础理论   61篇
污染及防治   196篇
评价与监测   17篇
社会与环境   1篇
灾害及防治   13篇
  2024年   18篇
  2023年   53篇
  2022年   53篇
  2021年   74篇
  2020年   56篇
  2019年   58篇
  2018年   37篇
  2017年   33篇
  2016年   52篇
  2015年   65篇
  2014年   99篇
  2013年   56篇
  2012年   107篇
  2011年   80篇
  2010年   77篇
  2009年   61篇
  2008年   80篇
  2007年   51篇
  2006年   62篇
  2005年   51篇
  2004年   45篇
  2003年   39篇
  2002年   32篇
  2001年   23篇
  2000年   21篇
  1999年   21篇
  1998年   18篇
  1997年   20篇
  1996年   19篇
  1995年   10篇
  1994年   11篇
  1993年   15篇
  1992年   10篇
  1991年   9篇
  1990年   15篇
  1989年   5篇
  1988年   1篇
排序方式: 共有1537条查询结果,搜索用时 15 毫秒
331.
A photoelectrochemical process in the degradation of an azodye(Acid Orange II)on a Pt/TiO2 film electrode was investigated.By using the glass device and the voltage stabilized source of direct current,decolorization ratios higher than 78% were observed during a period of 5h.Comparing this value with the sum of the decolorization ratios obtained by a sole application of electrochemical(lower than 3%)and photochemical(about 23%)procedures, a significant synergic effect between both processes was observed.The effects of adscititious voltage and pH value on the decolorization ratios were obvious while the effect of the amount of aeration was minor.  相似文献   
332.
电凝聚法在垃圾渗滤液处理中的应用   总被引:1,自引:1,他引:1  
采用电凝聚方法,作为垃圾渗滤液前处理工艺,且研究中采用槽底曝气装置,既起到了搅拌作用,同时也起到了气浮作用。以铝板为极板材料,当处理进水COD浓度为9399.3mg/L,电流密度为1.2A/dm2,极板间距为10mm,处理时间为40min时,COD的去除率达到43.3%,NH3-N的处理效率最高可达到80.1%。  相似文献   
333.
三维电极方法处理石油工业废水COD的实验研究   总被引:7,自引:1,他引:7  
通过三维电极处理废水COD的实验 ,研究了三维电级的填充粒子电极 ,主电极及各项操作参数 ,得到了影响三维电极电化学反应器各参数的最佳水平组合。并证实该水平组合具有很强的降解废水COD的能力  相似文献   
334.
335.
电浮选法分离酒精废糟液中的糟渣   总被引:3,自引:0,他引:3  
一、电浮选法的基本原理当电解酸性酒精废水时,在阴极有氢气析出而在阳极有氧气析出,其电极反应如下:阴极反应:2H~++2e=H_2↑阳极反应:20H~--2e=1/2O_2↑+H_2O 当憎水亲油物质,被气泡粘附润湿情况见  相似文献   
336.
利用电渗透-高级氧化协同的方法,采用自制装置对市政污水厂的脱水污泥进行了深度脱水研究,系统研究了恒定电压和恒定电流对污泥脱水效果的影响,并分析了电渗透-高级氧化协同对污泥中胞外聚合物(EPS)的影响规律。结果表明,电压和电流的变化对于污泥脱水的影响显著,电渗透-高级氧化协同对污泥中的胞外聚合物有明显的破坏作用,其中电渗透作用对松散附着型EPS(LB-EPS)和黏液层EPS(S-EPS)的破坏明显,而高级氧化作用对于紧密黏附型EPS(TB-EPS)的破坏更为显著。  相似文献   
337.
根据静电学和流体力学理论,利用CFD软件,对圆柱形电-袋除尘装置中的气流分布情况进行研究。研究结果表明,除尘装置的内外圆收尘板间的气流速度呈梯度分布,有利于粉尘颗粒在内外圆收尘板上的沉降,但电场区后端处的气流分布不均匀,不利于过滤收尘。过滤风速与滤袋长度呈正相关,影响滤袋寿命。滤袋下方的集灰区存在漩涡,气流对集灰斗箱体产生了严重的冲刷,导致二次扬尘。  相似文献   
338.
光伏发电是我国重要的清洁能源发展战略,也是资产收益扶贫的重要方式.为了探讨光伏发电项目对政策的依赖性及其在经济上的可持续性,采用平准化度电成本(LCOE)模型开展研究,并开发出平准化度电净现值(LNPVE)模型用于研究光伏发电项目的长期经济效益及其影响因素.将上网电价与补贴作为效益指标引入LCOE模型,即得到LNPVE,LNPVE为折现度电收入和折现度电成本之差.LNPVE模型不仅能将政策因素引入经济效益分析中,同时还能考虑效益变动,从而分析光伏发电项目的经济可持续性.以宜昌市长阳土家族自治县渔峡口镇村级光伏扶贫电站项目为案例的分析表明,从LCOE模型结果来看,案例项目能够实现经济效益;然而从LNPVE模型结果来看,现行补贴上网电价下案例项目的长期经济效益仍存在不确定性,且这种不确定性随着光伏发电上网电价补贴“退坡”政策的出台而有所强化.敏感性分析结果表明,影响案例项目经济效益的首要因素是技术因素,其次是政策因素,再者是经济因素.若案例项目以无补贴标杆电价平价上网,则需将单位造价降低19.3%或者年利用小时数提高14.8%;若要进一步实现以燃煤发电上网电价平价上网,则需将单位造价降低97.0%或者年利用小时数提高182.1%.因此,应当针对光伏发电特别是村级光伏扶贫项目实施必要的电价补贴,将补贴“退坡”与提高光伏发电效率相结合,并将有针对性地提高补贴效率作为光伏电价补贴的重点,同时高度重视技术改进及推广应用和运营维护的成本降低及质量提高,以持续实现光伏发电项目的经济效益.   相似文献   
339.
滕辰姊  李坚 《中国环境科学》2020,40(6):2389-2397
为研究液滴荷电雾化作用下静电场中粉尘颗粒的捕集特性,设计并搭建了线板式湿式电除尘装置,通过实验获得了电场强度、停留时间、粉尘浓度和液滴流量等参数对捕集效率的影响规律.结果表明,施加雾化荷电液滴后各粒径段颗粒的分级穿透率均低于干式电除尘器,随着电场强度增加至3.5kV/cm,分级穿透率降幅逐渐增大,出口浓度降幅达到最大值,PM0.5、PM1和PM2.5分别降低了28.7%、28.0%和27.1%,高于3.5kV/cm后降幅逐渐减小.相同电场强度下,捕集效率随停留时间的增加而增大,电场强度为4kV/cm时,停留时间由2.14s增大至4.04s,PM0.5、PM1和PM2.5的分级穿透率分别降低了50.2%、49.3%和48.5%.随着粉尘浓度的增加,颗粒碰撞和凝并作用提高,捕集效率逐渐增大,当空间电荷密度难以满足颗粒充分荷电后,继续增大粉尘浓度将导致捕集效率降低.液滴流量的增大能够促进颗粒荷电与凝并,有利于提高捕集效率.与传统湿式电除尘器相比,采用液滴荷电雾化能够明显降低耗水量,且保持较高的颗粒捕集效率.  相似文献   
340.
构建电凝聚臭氧化耦合工艺对城市污水处理厂二级出水进行深度处理,研究了不同初始pH值、臭氧投加量和电流密度对二级出水处理效果的影响.结果表明,当初始pH值为5、臭氧投加量为1.5 mg·mg-1、电流密度为15 mA·cm-2时,该工艺处理效果达到最佳,二级出水中溶解性有机物的去除率可达到58.6%.与单独电絮凝和臭氧氧化工艺相比,耦合工艺对有机物有更好的去除效果.由于金属盐水解产物可以作为臭氧化的催化剂,为了甄别其活性点位,将磷酸盐引入体系中,结果表明磷酸盐占据了混凝剂水解产物表面的羟基,从而阻碍了臭氧与水解铝盐混凝剂之间的反应,使得有机物的去除率降低,傅立叶红外(FT-IR)分析的结果进一步证明表面羟基是产生的铝盐混凝剂催化臭氧化的活性点位.为了进一步明确该耦合工艺去除溶解性有机物的机理,选择对氯苯甲酸(pCBA)探针法间接证明和电子顺磁共振(EPR)实验直接证明体系中羟基自由基(·OH)的存在,结果表明,电凝聚臭氧化耦合工艺较单独臭氧氧化工艺产生了更多的·OH,说明电絮凝产生的铝盐混凝剂水解产物可以作为催化剂催化臭氧产生·OH,提升体系对有机物的去除效率.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号