首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   18篇
  国内免费   25篇
安全科学   11篇
废物处理   4篇
环保管理   6篇
综合类   91篇
基础理论   17篇
污染及防治   14篇
评价与监测   9篇
  2024年   3篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   10篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   8篇
  2005年   6篇
  2004年   3篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
排序方式: 共有152条查询结果,搜索用时 7 毫秒
11.
本文论述了辽宁省特有污染因子硼、钼的污染现状及加强排污监管的必要性;提出了制定硼、钼排污收费标准对完善排污收费标准和强化环境监管具有重要意义。  相似文献   
12.
温度影响物质在环境中的存在形态及其生化反应速率,而高寒地区由于常年低温,常规处理方式是否能有效去除该地区污染物仍有待研究。基于此,选用硼选择性螯合树脂处理某高寒地区硼超标地下水,通过现场中试探讨工艺运行参数及效果,采用FTIR、SEM和BET表征探究树脂除硼机理。结果表明:16 BV/h(BV:树脂床体积,1 BV=22.5 L)的进水流速适用于该工程,此时的出水水质可达到GB 5749—2006《生活饮用水卫生标准》;树脂柱的穿透点为871.11 BV,树脂的交换容量为3.58 mg/g;树脂再生水中硼浓度为342.81 mg/L,可用作硼产品生产原料。树脂除硼后,树脂表面羟基官能团含量和孔容减少,且表面出现明显的褶皱,说明树脂对硼的去除过程包括颗粒内扩散和螯合过程。该试验结果可为高寒地区硼超标水处理提供理论支持和技术参考。  相似文献   
13.
对母液中Mg2+离子对硼掺入无机碳酸盐沉积的影响进行了研究。通过扫描电子显微镜和X射线衍射确定在Mg存在时生成的无机碳酸盐是低镁方解石。实验发现:溶液的pH值是硼进入碳酸盐的主要控制因素,低Mg2+方解石中硼的浓度从63.91 μg?g?1(pH?=?7.40??±??0.03)增加到582.41 μg?g?1(pH?=?8.80??±??0.03)。Mg2+离子严重影响硼进入碳酸盐中的量,在相同实验条件下,硼在低镁方解石中的含量高于无Mg2+方解石中的含量,平均为2.57倍(1.83?—?3.56倍)。这一结果表明:有Mg2+离子时,硼掺入无机碳酸盐的机制和无Mg2+离子的是不同的。Mg2+离子的存在改变了晶体的形貌。这对利用B/Ca指标恢复深海碳酸盐系统研究有重要影响。  相似文献   
14.
硼泥吸附水中酚的研究   总被引:7,自引:0,他引:7       下载免费PDF全文
经加热活化处理的硼泥,用于处理50mg/L的含酚废水,加入量为1%时,最佳吸附酚的pH为2~4,去除率为32%;加入量为5%时,去除率最好可达60%。吸附平衡浓度与吸附量关系符合Lanmuir吸附等温式,其20.0、25.0、30.0℃时的饱和吸附量分别为3.25、2.50、1.75mg/g,其吸附速度符合鲛岛吸附动力学方程。通过活性硼泥的红外光谱和X射线衍射图,探讨了吸附机理。  相似文献   
15.
电流密度对BDD电极电化学矿化吲哚的影响与机制   总被引:1,自引:1,他引:1  
张佳维  王婷  郑彤  蒋欢  倪晋仁 《环境科学》2017,38(9):3755-3761
掺硼金刚石膜(BDD)电极电化学氧化法是去除难降解有机污染物的有效手段.与总有机碳(TOC)等的测定相比,气态中间产物的逸出量能够更直观有效地反映有机物的矿化程度与去除效果.本研究以吲哚为代表性污染物,通过对比不同电流密度(10、20和30 m A·cm-2)下BDD电极对吲哚的去除率与矿化率,结合降解过程中碳和氮形态的变化与守恒情况,分析吲哚的降解机制.结果表明,BDD电极对吲哚有良好的去除效果,电流密度为10、20、30 m A·cm-2时,吲哚达到100%去除的时间分别为8、5和4 h;TOC去除率、CO_2产生量均随电流密度的增加而增大,证明矿化率与电流密度成正相关;电解产生的CO_2气体与TOC、无机碳(TIC)构成了碳守恒体系.4~5 h时,体系TOC、TON和CO_2产生量均没有变化,表明电解产生的靛红具有较高的稳定性,此时为中间产物积累阶段;XPS表征进一步证实了中间产物靛红、苯醌等在电极表面的吸附,随着电解时间的延长,这些吸附的中间产物可进一步被降解.本研究从气态产物检测及碳氮形态分析与守恒的角度阐释吲哚矿化过程,对于辅助揭示有机物的电解过程有重要意义.  相似文献   
16.
潘社奇  万小岗  苏伟  程亮 《环境工程》2014,32(7):123-126
采用PCT法对摩尔组成为xB2O3-(40-x)Fe2O3-60P2O5系列玻璃的化学稳定性进行了测试,并结合XRD与FTIR分析测试手段,研究了所制备的系列玻璃的结构。化学稳定性测试结果表明,当x=11时,所制备的玻璃的化学稳定性最佳,并且在5≤x≤13范围内基本一致;FTIR分析结果表明,在此配方条件下,玻璃中磷元素主要以PO3-4和P2O4-7基团的形式存在,硼元素主要以BO4和BO3形式存在,因而具有良好的化学稳定性。  相似文献   
17.
IntroductionChlorobenzoic acids ( CBAs ) are important chemicalproducts and extensive used as the intermediate and analysisreagent in many industrial fields(Zhang, 2001). Therefore,CBAs may directly and constantly release into environment,and it was a…  相似文献   
18.
目的 探究不同温湿度条件下微米硼的氧化层结构特征。方法 利用高温水浴浸泡处理去除原料微米硼的表面氧化层,然后在恒温恒湿条件下对微米硼进行加速氧化,利用扫描电子显微镜、透射电子显微镜和X射线光电子能谱对加速氧化后硼颗粒的氧化层厚度及组成进行分析,总结表面氧化层结构及成分组成变化规律,揭示温湿度条件下微米硼的氧化机制。结果 微米硼经高温水浴浸泡处理后,表面氧化层去除率达到50%。随着加速氧化时间的延长,硼颗粒氧化层的厚度逐渐增大,由内向外硼颗粒表面可以用B-BxOy-B2O3三层结构来表示,BxOy总是伴随着B2O3同时出现的,且随着氧化反应的进行,颗粒表面BxOy的含量将超过B的含量。结论 不同温湿度条件下微米硼的氧化机制为O2向B颗粒内部单向扩散的反应机制,B先与O2反应,形成低氧化物BxOy,BxOy进而与O2反应生成B2O3。随着氧化层厚度的增加,O2向B颗粒内部扩散的阻力增大,氧化反应速率随之降低。相比湿度的影响,温度的升高可显著加快硼表面氧化层的形成;温度一定时,湿度的增加可促进硼氧化层的形成。  相似文献   
19.
金刚石膜电极对有机污染物的电催化特性   总被引:10,自引:0,他引:10  
研究了化学气相沉积法(CVD)制备得到的掺硼金刚石膜电极的物理性质和电化学性能.用扫描电子显微镜(SEM)法表征了金刚石膜的表面微观结构,采用循环伏安法和交流阻抗法研究了电极的电化学性质.结果表明,金刚石薄膜表面形态为复晶结构,颗粒大小均匀,掺硼后使电极具有良好的导电性能.金刚石膜电极具有很宽的电势窗口,在酸性、中性和碱性3种介质中分别为4.3V、4.0V和3.0V.同时,金刚石膜电极的背景电流非常低,为-9×10-6~5×10-7A.在铁氰化钾电解液中,金刚石膜电极表面在反应过程中始终保持良好的活性,在表面进行的电化学反应具有良好的准可逆性,其电极动力学主要是受扩散过程所控制.金刚石膜电极对有机污染物的催化氧化作用具有选择性.与铂电极和石墨电极相比,金刚石膜电极对苯酚、硝基苯等芳香化合物的催化氧化强烈,氧化过程较为简单、彻底.这些性质表明金刚石膜电极是一种非常适用于环保处理的新型电极.  相似文献   
20.
为了探明酸雨对红壤中硼释放的影响,了解土壤缺硼机制,采用室内模拟酸雨淋溶土柱的方法,研究了酸雨作用下红壤中硼的释放特征.结果表明,酸雨加速了红壤中硼的淋溶损失.酸雨作用下红壤中硼的释放随淋溶量的变化具有初期阶段减小,中期阶段显著增大和后期阶段又减小的阶段性特点.模拟酸雨的pH值越低,硼的释放量越高.酸雨对硼释放的这种促进作用,一般表现为中期阶段的影响要大于初期和后期阶段的影响.淋出液中硼含量的动态变化与pH值的变化成负相关关系.供试土壤不同,硼的释放强度和释放特征存在一定的差异性,硼的释放强度和特点明显受土壤硼的背景值和土壤对酸缓冲能力的影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号