首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   31篇
  国内免费   91篇
安全科学   11篇
废物处理   22篇
环保管理   10篇
综合类   169篇
基础理论   49篇
污染及防治   28篇
评价与监测   2篇
  2024年   5篇
  2023年   10篇
  2022年   24篇
  2021年   29篇
  2020年   38篇
  2019年   45篇
  2018年   19篇
  2017年   20篇
  2016年   20篇
  2015年   19篇
  2014年   19篇
  2013年   7篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
31.
Pd-Fe/石墨烯多功能催化阴极降解4-氯酚机制研究   总被引:1,自引:1,他引:0  
祁文智  王凡  王辉  施钦  逄磊  卞兆勇 《环境科学》2015,36(6):2168-2174
制备出Pd-Fe/石墨烯多功能催化阴极,与Ti/Ir O2/Ru O2阳极、有机涤纶滤布构成隔膜电解体系,将阴极催化加氢脱氯作用和阴阳极氧化作用耦合起来对含4-氯酚的有机废水进行降解,采用TOC仪、紫外扫描、高效液相色谱、离子色谱分析方法研究其降解效果及反应历程.结果表明,在最佳反应条件下,Pd-Fe/石墨烯催化体系阴阳极室中4-氯酚转化率分别为98.1%和95.1%,优于Pd/石墨烯催化体系阴阳极室的93.3%和91.4%.Pd-Fe/石墨烯催化体系脱氯效果高于95%,表明双金属催化剂具有更强的析氢能力.在阴阳极的协同作用下,反应120 min时4-氯酚被完全转化.通过阴极加氢脱氯作用,4-氯酚被还原成苯酚.随后苯酚在阴阳极的共同氧化作用下,被氧化生成对二苯酚、苯醌等中间产物,继而被氧化为小分子有机酸,最后被矿化为CO2和H2O,据此提出了4-氯酚降解的可能历程.  相似文献   
32.
为掌握氧化石墨烯(GO)的水环境风险,以斜生栅藻(Scenedesmus obliquus)和湖泊微拟球藻(Nannochloropsis limnetica)为研究对象,探究了GO对淡水微藻生长及其生物活性物质(碳水化合物、总蛋白质、总脂)的影响.结果表明,GO对2种微藻具有中等毒性,72h EC50值分别为25.63和48.44mg/L.透射电镜(TEM)观察发现,GO纳米片层既能附着于藻细胞表面也能进入藻细胞内部,造成藻细胞超微结构明显变化,包括:质壁分离;叶绿体收缩;淀粉粒数量减少甚至消失.较低浓度(10mg/L)GO会促进微藻中光合色素(叶绿素a、叶绿素b、类胡萝卜素)合成;而较高浓度(100mg/L)GO暴露下,2种微藻的类胡萝卜素和斜生栅藻叶绿素a的含量显著降低.2种浓度的GO总体上刺激了藻细胞内生物活性物质的合成,这是污染胁迫下的一种主动防御机制;而较高浓度GO造成碳水化合物含量显著降低,可能原因是细胞中储能物质由淀粉向中性脂转化.  相似文献   
33.
为了解析溶解性微生物产物(SMP)在GO/PVDF杂化膜面的污染特性,对膜片进行了宏观污染实验,并采用耗散石英微晶天平(QCM-D)从微观角度分析了SMP在自制镀膜芯片上的吸附规律和污染层结构变化.结果表明,GO含量为0.5wt%的膜污染恢复率最高(79.95%),抗污染能力最强.QCM-D实验发现,GO含量为0wt%镀膜芯片表面SMP吸附量最大,污染较为严重.膜片亲水性越强,吸附频率变化越小,抗污染能力越强.此外,GO含量为0.5wt%镀膜芯片表面的污染物结构比较疏松和柔软,其他膜表面的污染物结构较为坚硬和致密.  相似文献   
34.
文章采用溶剂热合成法制备出了金属有机骨架(MOF)1, 3, 5-均苯三羧酸铜,即Cu-BTC,然后将Cu-BTC与氧化石墨烯(GO)进行复合制备Cu-BTC/GO复合材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、红外光谱(FT-IR)、BET分析仪对材料进行了表征,并研究了复合材料对阴离子染料刚果红(CR)的吸附特性。XRD谱图显示MOF复合材料具有较高的结晶度。SEM表征证实了MOF在GO表面实现了成功生长。复合材料对CR的去除率大于单一MOF的去除率,吸附过程符合准2级动力学和Langmuir吸附等温线模型,吸附容量达到1 491.6 mg/g。总的来说,Cu-BTC/GO可以作为染料废水处理的优良候选材料。  相似文献   
35.
本文通过吸附动力学和吸附等温线探究了氧化石墨烯(GO)纳米颗粒对3种典型的四环素类抗生素(即四环素(TC)、土霉素(OTC)和金霉素(CTC))吸附特征.结果表明,伪二级动力学模型可以很好的拟合吸附动力学的结果,吸附速率可能受化学吸附控制.吸附等温线的结果显示GO对3种抗生素均有较高的吸附能力,且吸附能力依次为:CTC>OTC>TC.这主要是由于四环素类抗生素可以通过π-π作用、阳离子-π键、疏水作用以及静电作用等机制与GO产生结合.此外,四环素类抗生素在GO上的吸附行为与背景溶液的水化学条件(如pH、离子强度和二价金属离子)密切相关.总体来讲,由于静电斥力的增强,抗生素在GO上的吸附量随着背景溶液pH值的升高或离子强度(NaCl)的增加而降低,这主要是由于静电引力和吸附点位的减少所致;二价阳离子(Cu2+)可以通过表面桥连作用,显著促进抗生素在GO上的吸附.本研究结果清楚地表明抗生素本身的化学性质和背景溶液的水化学条件在GO去除抗生素的过程起着重要作用.  相似文献   
36.
以水稻秸秆、牛粪和氧化石墨烯为原料,制备4种不同类型生物炭:水稻秸秆生物炭、牛粪生物炭、氧化石墨烯/水稻秸秆生物炭和氧化石墨烯/牛粪生物炭;以水中常见的四环素类抗生素和磺胺类抗生素中的土霉素、四环素、磺胺二甲嘧啶和磺胺甲恶唑为目标污染物,探讨不同类型生物炭对水中抗生素吸附特性.实验结果表明,抗生素在不同类型生物炭上吸附...  相似文献   
37.
毛翰  董蕙  Ghosh Saikat  王振全  郭进 《环境化学》2019,38(10):2300-2305
氧化石墨烯(Graphene oxide, GO)表面具有丰富的官能团和较高的比表面积,能够作为膜材料应用于膜分离技术.然而,目前合成GO的技术很难保证其横向尺寸的均一性.此外,GO在自然水环境中分散性的稳定性受环境中pH值和离子强度的影响.本文研究了横向尺寸、pH值和离子强度对GO表面双电层电荷或结构组装所需的相互作用力的影响.从原位原子力显微镜(Atomic force microscope, AFM)获得的力-距离曲线(F-D)可以看出,溶液条件对DLVO力的作用.GO的双电层静电斥力随着pH值的升高而增大,这可能是由于表面官能团的电离作用增强所致.但随着离子强度的增加,双电层斥力减小,得到的数据与DLVO理论一致.通过Zeta电位和开尔文探针力显微镜(Kelvin probe force microscopy, KPFM)测量,确定了氧化石墨烯片层表面电荷的不均匀性.  相似文献   
38.
采用水热法制备了α-磷酸锆(α-ZrP)/氧化石墨烯(GO)纳米复合材料,采用XRD、SEM、EDX、FTIR和XPS对其进行了表征,并将其制成电极,考察了其在电场辅助下对Sr2+的吸附性能。表征结果显示,纳米片状的α-ZrP在具有大比表面积的GO表面生长,团聚现象减少。实验结果表明:在α-ZrP与GO质量比9∶1、外加电压1.2 V、溶液pH 7.0的条件下,采用α-ZrP/GO吸附50 mg/L SrCl2溶液120 min,Sr2+吸附量可达45.28 mg/g,高于纯α-ZrP和GO,约为无电场吸附时的2倍;α-ZrP/GO具有良好的稳定性,可循环使用,5次循环后的Sr2+吸附量仍保持原吸附量的88%;α-ZrP/GO对Sr2+的吸附符合准二级动力学模型和Langmuir等温吸附模型,吸附过程以离子交换反应的化学吸附为主,存在单层吸附。  相似文献   
39.
采用溶胶-凝胶法制备铜锌复合氧化物(Cu/ZnO),并将Cu/ZnO纳米粒子负载到还原氧化石墨烯(RGO)表面制备Cu/ZnO-RGO复合材料.对Cu/ZnO-RGO复合材料进行表征分析及抗菌性能考察,结果表明,Cu/ZnO纳米粒子成功负载在RGO表面,负载前后Cu/ZnO纳米粒子形态不发生改变,复合材料纯度较高.Cu/ZnO-RGO复合材料对大肠杆菌与金黄色葡萄球菌均有着优异的抗菌性能,可以破坏细菌细胞膜,导致细菌内容物流出,延长细菌进入对数生长期所需的时间.当RGO质量分数为15%?Cu/ZnO-RGO复合材料使用量为120μg/mL时,在循环冷却水系统中作用2h即可拥有96.76%的抗菌率.  相似文献   
40.
以P25为原料,采用碱热法制备二氧化钛纳米管(Ti O_2nanotubes,TNT),Hummers法制备氧化石墨(Graphite Oxide,GO),水热法生成石墨烯二氧化钛纳米管(GR/TNT)复合光催化剂。通过XRD、FTIR、SEM及UV-Vis光谱仪对材料进行表征,表明GR/TNT由化学键结合,且禁带宽度由3.2 e V减小到1.38 e V。掺杂GR可抑制TNT空穴和电子间的复合,且拓宽其光响应范围,光催化活性可延伸到可见光范围。通过GR/TNT降解苯酚,确定其最佳制备条件。180℃下水热反应3 h的2.5%GR/TNT光催化效果最佳,在紫外光(11 W)和可见光(500 W)条件下,10 mg/L的苯酚降解率分别可达95%和80%。GR/TNT降解苯酚满足一级反应动力学方程(R~2≥0.95),且具有较好的稳定性和重复使用性,循环5次利用率可达到初次的88%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号