首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1005篇
  免费   144篇
  国内免费   606篇
安全科学   138篇
废物处理   129篇
环保管理   57篇
综合类   942篇
基础理论   259篇
污染及防治   207篇
评价与监测   15篇
社会与环境   1篇
灾害及防治   7篇
  2024年   22篇
  2023年   61篇
  2022年   103篇
  2021年   112篇
  2020年   70篇
  2019年   97篇
  2018年   63篇
  2017年   67篇
  2016年   77篇
  2015年   90篇
  2014年   124篇
  2013年   99篇
  2012年   93篇
  2011年   98篇
  2010年   75篇
  2009年   89篇
  2008年   76篇
  2007年   71篇
  2006年   64篇
  2005年   38篇
  2004年   41篇
  2003年   33篇
  2002年   25篇
  2001年   17篇
  2000年   5篇
  1999年   5篇
  1998年   12篇
  1997年   4篇
  1996年   12篇
  1995年   1篇
  1994年   2篇
  1992年   6篇
  1991年   3篇
排序方式: 共有1755条查询结果,搜索用时 484 毫秒
791.
本文以一株筛自胶州湾沉积物中的好氧反硝化细菌Zobellella sp.B307为研究对象,在短期暴露条件下,通过细菌的生长、脱氮能力,相关酶活以及代谢途径等指标的变化,研究纳米氧化锌(ZnO-NPs)对该菌株的毒性效应;结合锌离子溶出试验、CAT和ROS等氧化应激水平测定,探讨ZnO-NPs对该菌株的致毒机制.结果表明,200mg/L的ZnO-NPs会使菌株硝酸盐氮去除率降至57.53%,LDH升高至对照组的378%,ROS水平高达对照组的5.34倍,SOD活性比对照组升高了60.32%,NIR活性仅为对照组的14.46%;ZnO-NPs主要通过诱导菌株活性氧的生成使其膜通透性改变、相关酶活性下降,并使相关蛋白质、氨基酸的合成及基因表达等代谢通路受到影响,进而抑制该菌株的反硝化能力;游离锌离子的产生可能不是ZnO-NPs对菌株的主要致毒途径.  相似文献   
792.
肖荣燕 《福建环境》2000,17(1):23-23
通过对高岭土矿山开采对环境影响的成因分析,提出了治理对策。  相似文献   
793.
794.
为探讨纳米氧化铝(nAl_2O_3)气道滴注对小鼠脏器的毒性作用,本研究将Balb/c小鼠随机分成6组:生理盐水组、50 mg·kg~(-1)·d~(-1) Vit E(维生素E)组、0.5 mg·kg~(-1)·d~(-1) nAl_2O_3组、5 mg·kg~(-1)·d~(-1) nAl_2O_3组、50 mg·kg~(-1)·d~(-1) nAl_2O_3组、nAl_2O_3 50+Vit E组(50 mg·kg~(-1)·d~(-1) nAl_2O_3+50 mg·kg~(-1)·d~(-1)Vit E).实验周期为21 d,气道滴注暴露,隔天滴注,维生素E灌胃阻断.染毒结束后,检测肺部、脾脏、肝脏和肾脏中活性氧(Reactive Oxide Species,ROS)和还原型谷胱甘肽(Glutathione,GSH)含量,并进行肺部病理学观察和肺泡灌洗液细胞计数.结果表明:与对照组相比,nAl_2O_3剂量为0.5 mg·kg~(-1)·d~(-1)时,小鼠肺部ROS含量增加(p0.05),肝脏GSH含量下降(p0.05);nAl_2O_3剂量为5和50 mg·kg~(-1)·d~(-1)时,小鼠肺部、脾脏、肝脏和肾脏ROS含量均显著增加(p0.05),肺部和肝脏GSH含量均显著下降(p0.05);且小鼠肺部出现支气管壁增厚、气道腔皱缩、组织纤维化等气道重塑和嗜酸性粒细胞等炎症细胞浸润现象.而抗氧化剂维生素E的阻断显著降低了肝脏ROS含量,有效恢复了肺部GSH活性(p0.01),且缓解了肺部气道重塑和炎症细胞浸润现象(p0.05).研究表明,nAl_2O_3经气道滴注染毒后,不仅会对小鼠肺部造成损伤和炎症反应,同时也能够对脾脏、肝脏和肾脏造成氧化损伤.本研究可为纳米材料的安全性应用及其潜在危害的预防提供科学依据.  相似文献   
795.
张优  范文宏  李嘉尧  李昂  柳姝 《环境工程》2019,37(11):110-118
氢气纳米气泡水作为一种新型的选择性抗氧化剂,近年来已成为医学和植物学领域的研究热点。将氢气纳米气泡技术用于环境毒理领域,探求其对大型溞生长繁殖的影响,以及在重金属污染胁迫下对大型溞的毒性缓解效应。研究结果表明:在重金属铜的污染胁迫下,氢气纳米气泡水的存在可以显著降低大型溞体内的铜积累量并减低大型溞的死亡率。在无重金属污染胁迫下,氢气纳米气泡水可以促进大型溞的生长繁殖,显著增加大型溞的产溞量,并缩短产溞时间。该结果可为氢气纳米气泡水在环境毒理领域的研究提供基础数据,并为氢气纳米气泡水在环境领域的应用提供参考。  相似文献   
796.
通过水热法制备了暴露(001)晶面的Bi2WO6纳米片,利用光还原法将Pt纳米颗粒负载于其表面.选择苯甲醇氧化和罗丹明B(RhB)降解为探针反应,评价了催化剂的光催化性能.在苯甲醇氧化实验中,Pt负载暴露001晶面的Bi2WO6样品的苯甲醇转化率为20.7%,约为未负载样品的2倍.在RhB降解实验中,Pt负载样品在光照40min后对RhB的矿化率可达81.1%,而未负载样品RhB矿化率仅为55.8%,表明Pt负载样品具有更优的降解速率和矿化能力.催化剂性能的提升归因于高能晶面暴露和Pt负载的协同作用.Pt纳米颗粒的负载作为助催化剂增加了催化剂表面的活性位点,同时提高了晶面光生电子空穴对的分离和迁移效率.  相似文献   
797.
纳米金凭借其独特的光电特性、良好的稳定性及生物相容性被广泛应用于工业催化、污染控制及医学诊断等领域。近年来,微生物法合成纳米金具有绿色低毒、条件温和、成本低廉等优势而倍受关注。然而,如何对纳米金的形貌尺寸进行定向调控仍有待进一步探究。该研究选取Fe~(3+)、Zn~(2+)、Al~(3+)、Co~(2+)、Ni~(2+)、Pb~(2+)及Sn~(2+)等多种金属离子,诱导曲霉菌(Aspergillus sp.) WL-Au合成纳米金,对其形貌进行定向调控。紫外-可见光谱分析结果表明,经Fe~(3+)、Sn~(2+)诱导的菌株合成的纳米金分散性较好,其余金属离子诱导菌株合成的纳米金单分散性较差、易沉聚。透射电子显微镜分析结果表明,大多数金属离子诱导菌株合成的纳米金为球形和伪球形,有少量的三角形;其中,经Fe~(3+)诱导后,菌株WL-Au胞外合成形貌均一、粒径较小的球形纳米金,而经Pb~(2+)诱导后,合成形貌均一的纳米棒。此外,Fe~(3+)诱导菌株合成的球形纳米金对4-硝基苯酚具有良好的催化还原性能,其催化速率常数k为13.3×10~(-3)s~(-1)。研究表明曲霉菌(Aspergillus sp.)WL-Au经Fe~(3+)诱导后可显著提高胞外合成纳米金的能力,且合成的纳米金具有形貌均一、分散性好、催化速率高的特点,在催化还原污染物方面具有较好的应用潜力。  相似文献   
798.
根据π-π作用原理和影响因素,运用异氰酸酯易和羟基反应的特性,将具有酰胺基的芳环引入到包硅的Fe_3O_4磁纳米粒子表面,制备新型磁性吸附材料Fe_3O_4@SiO_2@N-Phe,并研究其对环境水样中邻苯二甲酸酯类的萃取性能。结合化学计量学对邻苯二甲酸酯的GC-MS质谱图进行分辨定性,从31个色谱峰中解析并鉴定出了18种化学成分,其中邻苯二甲酸酯类5种,占总含量的35.74%,其它13种化学成分含有的官能团主要为苯基、双键或羰基。实验证明该磁纳米粒子具有用量少、稳定性好、选择性高、快速富集与分离、萃取过程简单等优点。磁纳米粒子结合化学计量学方法,既增强了富集的选择性、简化萃取过程、降低前处理的难度,又通过化学计量学法对质谱图进行最大程度的解析,获得全面检测结果,为快速、准确分析环境复杂未知体系提供了新的途径。  相似文献   
799.
近年来纳米零价铁因其比表面积大、表面活性高、还原性强、原材料丰富易得等优势而在废水处理中备受关注,是目前研究的热点。但其在实际应用中存在易团聚和易氧化等问题,因此需要采用适当的方法对纳米零价铁进行改性。该文主要介绍纳米零价铁的制备、改性方法、在废水处理中应用的研究进展,包括常用的制备方法和通过不同的机制降解各类环境污染物(如重金属、有机卤代物、硝酸盐、磷酸盐等);介绍了纳米零价铁在实际应用中尚需解决的问题及未来研究方向,应该着重于改进或者开发新制备方法以降低成本和拓展应用范围。  相似文献   
800.
通过对耕作红壤的现场实验,较为系统的反映了人工纳米颗粒(TiO_2、ZnO)对土壤理化性质的影响。数据表明,在本实验周期(90 d)内,耕作红壤掺杂不同剂量(0. 1 mg/g、0. 2 mg/g、0. 5 mg/g、1 mg/g、3 mg/g)人工纳米颗粒后,纳米颗粒显著提升了土壤pH和电导率值;纳米颗粒对土壤微生物菌落数有一定的抑制作用;纳米颗粒对土壤有机质含量的影响不明显。整体而言,人工纳米颗粒(TiO_2、ZnO)进入土壤体系后,对土壤理化性质产生了一定程度的影响,且剂量越大,影响越明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号