首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   300篇
  国内免费   930篇
安全科学   77篇
废物处理   111篇
环保管理   137篇
综合类   1761篇
基础理论   232篇
污染及防治   280篇
评价与监测   191篇
社会与环境   9篇
灾害及防治   20篇
  2024年   66篇
  2023年   183篇
  2022年   213篇
  2021年   221篇
  2020年   156篇
  2019年   132篇
  2018年   76篇
  2017年   112篇
  2016年   72篇
  2015年   109篇
  2014年   171篇
  2013年   104篇
  2012年   139篇
  2011年   129篇
  2010年   94篇
  2009年   91篇
  2008年   65篇
  2007年   93篇
  2006年   103篇
  2005年   71篇
  2004年   59篇
  2003年   55篇
  2002年   35篇
  2001年   29篇
  2000年   34篇
  1999年   35篇
  1998年   25篇
  1997年   27篇
  1996年   24篇
  1995年   14篇
  1994年   12篇
  1993年   14篇
  1992年   14篇
  1991年   11篇
  1990年   11篇
  1989年   16篇
  1987年   2篇
  1986年   1篇
排序方式: 共有2818条查询结果,搜索用时 140 毫秒
1.
臭氧降解乐果机理探讨   总被引:5,自引:0,他引:5  
《农村生态环境》2004,20(3):70-72,76
  相似文献   
2.
利用GC5000在线气相色谱仪于2018年4月15日~5月15日对郑州市城区环境大气挥发性有机物(VOCs)进行监测,开展其污染特征、臭氧生成潜势(OFP)和来源解析研究.结果表明,监测期间,郑州市春季VOCs平均体积分数为40.26×10~(-9),非污染日和污染日VOCs平均体积分数分别为35.82×10~(-9)和44.12×10~(-9),污染日相较非污染日增长23%;VOCs物种对OFP的贡献表现为烯烃芳香烃烷烃炔烃;源解析结果显示监测期间郑州市VOCs主要来源是LPG源(66.05%)、机动车源(47.39%)、工业溶剂源(37.51%)、燃烧源(37.80%)和植物排放源(11.25%),且污染日的LPG源和植物排放源的贡献率较非污染日增长22.92%和68.50%.  相似文献   
3.
基于OMI数据的东南沿海大气臭氧浓度时空分布特征研究   总被引:1,自引:0,他引:1  
基于臭氧监测仪(OMI)卫星反演数据,对2005—2018年东南沿海5省区域大气臭氧柱浓度数据进行提取及分析,探讨其时空分布格局及影响因素.结果表明:①在时间变化上,14年间,该区域大气臭氧柱浓度整体呈先上升后下降的趋势,2005—2013年臭氧柱浓度持续升高,最高值为324.52 DU,高值区不断向南部区域扩大;2013—2018年臭氧柱浓度呈下降趋势,最低值为228.27 DU,但在2017、2018年略有上升.②在空间分布上,臭氧柱浓度自北向南逐渐降低,高值区集中分布在江苏及浙江省北部;低值区集中于福建省南部及广东省大部分地区.③在季节变化上,大体呈现出春夏季高于秋冬季,高值区在春夏季交替出现,秋季略高于冬季,但差异不明显.④稳定性分析表明:研究区臭氧柱浓度整体呈现中部分散、南北部集聚、差异较显著的分布格局.⑤自然因素中,风向、气温均呈现显著正相关,江淮地区的梅雨季节(降水)及华南地区的台风和暴雨也起到显著作用.⑥人文因素中,臭氧柱浓度与地区生产总值、各产业生产总值及机动车保有量均表现出正相关,其中,臭氧柱浓度与第二产业的相关度最高.另外,臭氧柱浓度与NO_x排放量表现出显著相关性.VOC_s对臭氧柱浓度的影响中,工业源是主控因素,交通源和居民源次之,电厂源对臭氧柱浓度的影响最弱.这进一步说明臭氧浓度的变化受到了诸多因素的综合影响,但气温、NO_x及VOC_s的排放是臭氧浓度变化的主导因素.  相似文献   
4.
5.
结合天气形势,地面观测资料和WRF-CMAQ模式,分析了2017年7月8~15日成都市一次罕见持续O3污染过程的特征及成因,量化了各个物理化学过程对此次污染过程的相对贡献,并通过敏感性实验分析了四川盆地内O3及其前体物的区域传输和本地光化学反应对此次污染过程的影响.结果表明,此次O3持续污染过程主要是因为四川盆地内盛行偏东风,导致盆地东部城市群的O3及其前体物经区域输送到成都及周边地区,加之成都市出现小风、气温升高等气象条件进而形成,属于典型的传输性爆发污染.持续污染形成的主要物理化学机制体现为日间气相化学过程贡献为稳定的正值,加之输送过程贡献出现爆发式升高,进而导致近地面O3小时净增量迅速上升且高达50μg/(m3·h),随之O3浓度迅速响应,产生爆发式增长.此外,敏感性实验结果显示此次成都市O3持续污染的形成受区域输送影响较受本地光化学反应影响更为明显.O3污染爆发前上游地区高浓度O3及其前体物沿流场输送并在成都及周边地区不断积累,导致日间O3浓度不断升高.  相似文献   
6.
对北京地区27家汽修企业进行调研,选取2家典型汽修企业进行气袋采样-GC-MS-FID采集及分析,定量分析其VOCs的排放特征,并计算其臭氧生成潜势(OFP)。结果表明:使用不同漆料的汽修企业排放特征不同,水性漆企业非甲烷总烃的排放浓度为0.62~36.49 mg/m3,油性漆企业的排放浓度为0~100.39 mg/m3;水性漆排放的VOCs以烷烃为主,占比高达57.16%,丙烷(39.65%)和甲苯(11.41%)是首要污染物;卤代烃(55.51%)是油性漆企业的主要VOCs排放物种,主要组分为1,2-二氯丙烷和1,2-二氯乙烷;水性漆企业的OFP值为144.78 mg/m3,油性漆企业的OFP值为664.43 mg/m3,大气反应活性最大的物种多为芳香烃,芳香烃对OFP的贡献率分别为52.18%和88.44%。  相似文献   
7.
于2016年在中国广东大气超级监测站,开展4个季节的VOCs长时间观测,共获得2142组有效数据,并利用HYSPLIT模型分析珠三角地区VOCs时空分布特征.结果表明,各类VOCs混合比和化学反应活性具有明显的季节变化特点.观测期间,VOCs平均浓度为(18.523±20.978)×10-9,其中,低碳烯烃和苯系物二者混合比之和仅占46%,但贡献了85%的·OH消耗速率(LOH)、82%的臭氧生成潜势(OFP)和97%的二次气溶胶生成潜势(SOAFP).观测站点主要受来自北部内陆地区气团(1#)、西部内陆地区气团(2#)、台湾海峡南端气团(3#)以及南部海洋地区气团(4#)的影响.1#气团中炔烃和苯系物的混合比占比最高,分别达到10%、37%,而3#气团中低碳烷烃的浓度水平最高,达到(8.437±5.561)×10-9.通过估算气团中VOCs的化学反应活性,可以发现,1#气团的VOCs化学反应活性最强,其对O3和SOA的生成贡献最高.1#、2#、3#和4#气团中VOCs的化学反应活性主要由苯系物和低碳烯烃贡献.  相似文献   
8.
文章应用WRF-CHEM模式模拟分析了东南沿海地区2017年4月28日-5月1日的天气变化过程以及大气污染过程,并以东南沿海地区福建省泉州市为研究区域定量分析了春季外来输送对泉州市臭氧浓度贡献。模式准确地模拟了泉州大气臭氧的时间变化趋势以及我国东部以及东南沿海地区的臭氧空间分布状况,较好地再现了天气形势以及大气臭氧污染的演变过程。在春季研究时段内,来自华北及长江三角洲长距离输送的污染物与本地排放相互作用,在局地海陆风作用下造成东南沿海地区的臭氧污染。定量研究结果表明在东南沿海地区发生高臭氧污染时,外来输送对泉州市区臭氧污染贡献约占38%。  相似文献   
9.
10.
基于太原市2015年1月~2019年2月的空气质量监测数据,分析了太原市近地面臭氧浓度变化特征。结果表明:2015~2018年太原市臭氧年平均浓度为78.42、82.33、95.87、103.77μg/m 3,臭氧浓度存在加速上升趋势;臭氧浓度逐日变化范围为5~270μg/m 3,共有181 d超过GB 3095—2012《环境空气质量标准》二级标准限值(160μg/m 3),超标时段主要集中于5~8月份;臭氧浓度日变化呈单峰型分布,峰值与谷值时段分别为14∶00~16∶00和6∶00~7∶00;臭氧浓度有明显的月变化规律,峰值与谷值时段分别为6~7月和1月、12月;臭氧浓度还表现出显著的季节变化规律,按浓度高低依次排序为夏季、春季、秋季和冬季;臭氧浓度与NO 2、CO、PM 2.5浓度呈负相关性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号