首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3617篇
  免费   145篇
  国内免费   268篇
安全科学   606篇
废物处理   137篇
环保管理   468篇
综合类   1815篇
基础理论   352篇
污染及防治   156篇
评价与监测   391篇
社会与环境   55篇
灾害及防治   50篇
  2024年   12篇
  2023年   45篇
  2022年   69篇
  2021年   66篇
  2020年   90篇
  2019年   79篇
  2018年   47篇
  2017年   57篇
  2016年   87篇
  2015年   135篇
  2014年   369篇
  2013年   233篇
  2012年   265篇
  2011年   314篇
  2010年   250篇
  2009年   188篇
  2008年   243篇
  2007年   234篇
  2006年   192篇
  2005年   166篇
  2004年   148篇
  2003年   146篇
  2002年   96篇
  2001年   102篇
  2000年   84篇
  1999年   59篇
  1998年   46篇
  1997年   54篇
  1996年   47篇
  1995年   31篇
  1994年   19篇
  1993年   13篇
  1992年   11篇
  1991年   11篇
  1990年   10篇
  1989年   11篇
  1986年   1篇
排序方式: 共有4030条查询结果,搜索用时 984 毫秒
761.
利用方式对紫色水稻土有机碳与颗粒态有机碳的影响   总被引:6,自引:0,他引:6  
土壤是陆地生态系统中重要的动态碳库,其微小的变化可能带来对全球大气CO2浓度的较大变化。颗粒态有机碳在土壤中周转速度较快,比土壤总有机碳更易受土地利用方式的影响,对于评价土地利用变化对土壤碳固定过程影响具有重要意义。采集不同的耕作、轮作和施肥处理的14年28茬的紫色土长期试验土壤,分析有机碳与颗粒态有机碳含量在土壤及不同深度分布特点,结果表明:长期垄作免耕并实行水稻(Oryza sativa)油菜(Brassica)轮作的利用方式下,0~10cm土层土壤有机碳与颗粒态有机碳含量明显高于其他利用方式下,而稻油水旱轮作平作利用方式下最低。整个耕层0~30cm深度的土壤有机碳含量介于8.92~29.98g·kg-1之间,颗粒态有机碳含量变幅为0.54~3.43g·kg-1之间,且存在随深度递增而降低的趋势。土壤有机碳与颗粒态有机碳都可用作评价利用方式影响紫色水稻土土壤质量变化与固碳能力的有效指标,但颗粒有机碳对于管理措施的响应更为敏感。从总有机碳与颗粒有机碳的关系来看,不同管理下有机碳的增加与土壤物理保护能力的提高有关。垄作免耕(稻油)的利用方式最有利于有机碳的保护和稳定。  相似文献   
762.
进出水方式对高负荷浅层渗滤净化生活污水效果的影响   总被引:2,自引:0,他引:2  
为研究农村分散住户用水不均匀和排放泵井运行不连续条件下高负荷地下浅层渗滤系统的净化效果,建立渗滤试验柱,以实际生活污水为进水,在12.5 cm.d-1日均水力负荷下,比较连续进水、间歇进水和自由排水、间歇排水对实际生活污水净化效果的影响。结果表明,各渗滤柱对NH4+-N的平均去除率均大于96%。对COD的平均去除率为41.2%~67.7%,其中采用间歇进水、间歇排水方式的渗滤柱去除率最低,但出水仍可达到GB8978—1996《污水综合排放标准》中二级标准。各渗滤柱对TN的平均去除率为17.5%~37.2%,其中采用间歇进水、间歇排水的渗滤柱平均去除率最高,表明强化反硝化作用是提高脱氮效率的主要途径。对TP的平均去除率为51.0%~78.0%,其中采用连续进水、间歇排水的渗滤柱平均去除率最高,表明延长污水停留时间、增加与填料的接触面积能增强对TP的去除效果。间歇进水、间歇排水方式下,渗滤柱对COD的去除效果有所下降,但是对N、P营养盐的综合去除效果最好。  相似文献   
763.
采用γ-氨丙基三乙氧基硅烷化学修饰活化后的硅胶,以戊二醛为交联剂,接上羧甲基壳聚糖,继而接枝上β-环糊精作为功能单体,制备了一种用于分离富集水样中Cu(Ⅱ)的固相萃取新材料。利用红外光谱(FT-IR)、比表面分析(BET)、X射线衍射光谱(XRD)以及热重分析(TG)等方法对吸附剂进行结构表征。采用火焰原子吸收(FAAS)作为检测手段,考察了溶液p H、振荡时间、吸附剂用量、样品流速、洗脱液浓度和体积等对吸附剂吸附Cu(Ⅱ)的影响。吸附剂饱和吸附容量为9.37 mg/g,最大富集倍数高达350。吸附过程能用准二级动力学模型和Langmuir等温吸附方程进行很好的拟合。应用于环境水样中Cu(Ⅱ)的分离富集与测定,回收率在96.8%~105.2%之间,效果较好。  相似文献   
764.
以锰渣为材料,用聚环氧琥珀酸(PESA)作为萃取剂,研究PESA在不同pH、萃取剂浓度、土液比下对砷(As)的萃取效果。实验结果表明,与丙烯酸/马来酸酐共聚物(MA/AA)相比较,PESA对锰渣中As有优良的萃取效果。在萃取体系条件为pH=1、萃取剂浓度50 mg/mL、土液比1∶200、搅拌60 min并浸泡过夜时,PESA对砷的萃取率可达78.3%。实验还发现,PESA对三价砷和五价砷均有螯合萃取作用,对砷的萃取无价态的选择性。  相似文献   
765.
探讨了一种再生水中邻苯二甲酸酯类物质的测定方法——固相萃取—气相色谱—质谱,检测了相关再生水标准中涉及的邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)两类物质。在质量浓度为20~1 000μg/L时,两类物质的回归方程的相关系数均大于0.999,检出限分别是0.060、0.002μg/L,DBP、DEHP的相对标准偏差分别为4.1%~7.4%、5.1%~6.1%。利用固相萃取技术进行预处理,平均加标回收率为96.6%、89.6%。检测了北京市4座再生水厂出水中DBP和DEHP含量,其中,DBP在1.74~5.59μg/L,低于《城市污水再生利用景观环境用水水质》(GB/T 18921—2002)规定的限值(不超过0.1mg/L),但高于《城市污水再生利用地下水回灌水质》(GB/T 19772—2005)规定的限值(不超过3μg/L);DEHP在0.42~4.93μg/L,满足GB/T 19772—2005要求(不超过8μg/L)。  相似文献   
766.
序批式生物膜反应器挂膜启动实现短程硝化   总被引:2,自引:0,他引:2  
常温条件下(20~25℃),以模拟的人工配水为研究对象,采用序批式生物膜反应器(SBBR),在初期挂膜的基础上,笔者运用两种不同的挂膜方式即重新加入新泥和不加新泥而加大进水COD浓度来实现生物膜的快速启动。实验表明,2种挂膜启动通过14 d的培养与富集,NH4+-N与COD的处理效果都能分别达到85%和75%以上。将剩余污泥排尽后,采用第1种挂膜方式的反应器通过连续间歇曝气,达到了比较好的短程硝化效果。调整溶解氧,并且通过先下降后上升曝气量的方式,能进一步提高亚氮的出水。最终在DO为3.6 mg/L时,亚氮的积累率能达到平均74%左右,达到了比较好的亚硝化效果。而第2种挂膜方式培养的生物膜则以好氧反硝化菌为主,去除的氨氮由同化作用和培养的好氧反硝化菌去除,以后者为主。通过比较可以看出,为了实现短程硝化,第1种挂膜方式比第2种更具有优越性,有利于硝化菌种的生长和亚氮的积累,而第2种方式则有利于培养好氧反硝化菌。  相似文献   
767.
建立了基于填充吸附微萃取-液相色谱法检测水中肼、甲肼和偏二甲肼的方法。对影响方法效果的重要参数(如填充吸附微萃取的萃取材料、萃取循环次数和萃取速度、洗脱溶剂和洗脱体积、样品pH等)均进行了测试和优化。明确最优条件为先将样品pH调节为3.5,用HLB作为萃取材料,以15 μL/s的速度进行15次重复萃取,用100 μL含0.2%乙酸的乙腈进行洗脱。3种目标物在3 min内分离良好,并在10~500 μg/L范围内线性良好,相关系数范围为0.997 8~0.999 1,检出限范围为2.0~5.0 μg/L。在10、50、100 μg/L 3个浓度水平加标实验中,3种肼类的平均回收率为76.7%~96.5%,日内相对标准偏差为5.6%~9.1%,日间相对标准偏差为8.5%~16.7%。该方法能够满足水体中3种肼类物质的快速测定要求。  相似文献   
768.
建立了一种利用固相萃取法对固体废物浸出液(TCLP)中二硝基苯进行萃取,DB-5石英毛细管柱(30 m×0.25 mm×0.25μm)进行分离,质谱检测器检测二硝基苯的方法。方法在0.002 0~0.020 0 mg/L之间线性关系良好,二硝基苯三种同分异构体的检出限均为0.5μg/L,模拟样品加标回收率为93%~96%,RSD≤2%;实际固体废物样品测定的加标回收率为95%~98%。  相似文献   
769.
落实好中央、国务院确定的大战略方针,统筹城乡环境保护,全面推进环境友好的农村生产生活方式,切实解决危害群众身体健康的环境污染问题,积极培养农村生态文明,以环境保护优化农村经济增长,为实现全面小康目标和构建和谐社会提供环境安全保障,加强农村环境保护势在必行。[编者按]  相似文献   
770.
<正>煤炭是重要的能源和原料,但在煤炭的开采、加工过程中会排放出大量的污染和废弃物,如矸石、井下废气、粉尘、污水等,严重污染环境,而控制污染的措施之一就是清洁开采。采煤过程中排放的矸石,主要来源于井下岩石巷道掘进、半煤岩巷掘进、煤仓和溜煤眼的掘进以及采煤工作面的矸石(掺入煤炭中的顶、底板岩石或煤层夹矸中的岩石)。它与矿井开拓系统和采区巷道布置紧密相关。随着  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号