首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   60篇
  国内免费   428篇
安全科学   52篇
废物处理   3篇
环保管理   16篇
综合类   505篇
基础理论   322篇
污染及防治   48篇
评价与监测   13篇
社会与环境   2篇
灾害及防治   5篇
  2024年   6篇
  2023年   13篇
  2022年   20篇
  2021年   38篇
  2020年   21篇
  2019年   29篇
  2018年   29篇
  2017年   28篇
  2016年   25篇
  2015年   38篇
  2014年   76篇
  2013年   38篇
  2012年   37篇
  2011年   52篇
  2010年   52篇
  2009年   54篇
  2008年   61篇
  2007年   44篇
  2006年   32篇
  2005年   35篇
  2004年   24篇
  2003年   33篇
  2002年   22篇
  2001年   23篇
  2000年   20篇
  1999年   15篇
  1998年   10篇
  1997年   11篇
  1996年   17篇
  1995年   10篇
  1994年   7篇
  1993年   9篇
  1992年   11篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
排序方式: 共有966条查询结果,搜索用时 55 毫秒
31.
磷酸三苯酯(triphenyl phosphate, TPhP)是环境中最常见的有机磷酸酯阻燃剂之一,具有较强的挥发性,每天持续摄入TPhP,可能对人体肺部组织产生不利影响。本研究以人源的非小细胞肺癌细胞系(A549)为研究对象,采用高内涵分析系统检测50、100和200μmol·L-1 TPhP对细胞核形态、核膜通透性、线粒体纹理结构、线粒体膜电位、细胞内氧自由基水平、磷酸化组蛋白H2AX(phosphorylated histones H2AX, pH2AX)、细胞色素C和细胞凋亡等参数的影响。结果显示,与对照组相比,随着TPhP暴露浓度的增加,A549细胞活性显著下降,细胞核面积增加、核亮度降低和核碎片化程度加剧,核膜通透性增高,细胞核的各参数在200μmol·L-1 TPhP组变化最显著;细胞内氧自由基水平的显著升高,进一步导致线粒体损伤和细胞色素C释放,当TPhP为100μmol·L-1时,线粒体损伤程度最严重;当TPhP为100μmol·L-1和200μmol·L-1  相似文献   
32.
4种典型纳米材料对小鼠胚胎成纤维细胞毒性的初步研究   总被引:4,自引:0,他引:4  
为探讨不同种类纳米材料对原代培养小鼠胚胎成纤维细胞(Mouse embryo fibroblasts,MEF)的毒性效应及作用机制,选择4种典型的纳米材料(纳米碳、单壁碳纳米管、纳米氧化锌、纳米二氧化硅)制备颗粒悬液,设立5个剂量组(5、10、20、50、100μg·mL-1)对BALB/c小鼠MEF细胞进行24、48、72h染毒培养,利用细胞形态学观察和噻唑蓝实验(MTT比色法)检测上述4种纳米材料对MEF细胞活性的影响,同时,测定染毒24h后细胞培养液上清中乳酸脱氢酶(LDH)活性以探讨纳米颗粒对细胞膜完整性的影响.结果显示:1)4种纳米材料均能明显影响MEF细胞的生长形态.染毒24h后,MEF细胞发生不同程度的回缩变形,细胞间隙增大,排列稀疏,胞内颗粒物增多,细胞透明度下降.2)纳米碳、纳米氧化锌、纳米二氧化硅对MEF细胞增殖的抑制作用和对细胞膜完整性的损伤作用均随染毒剂量的升高而增强,具有明显的剂量-效应关系,其半数致死浓度(24h-IC50)分别为21.85、21.94、461.10μg·mL-1;碳纳米管组的剂量-效应之间不呈对数线性关系,未能得出其24h-IC50.3)在不同染毒剂量水平上,4种纳米材料的毒性对比差异显著:低剂量水平上纳米碳与碳纳米管的毒性强于纳米氧化锌和纳米二氧化硅,随着剂量的升高纳米氧化锌的细胞毒性升高最为显著.结果提示,纳米材料能够对MEF细胞造成毒性损伤,破坏细胞膜的完整性可能只是作用途径之一;纳米材料的毒性可能受粒径、形状、化学组成等许多因素的影响.  相似文献   
33.
潘媛媛 《环境化学》2006,25(4):528-530
大多数氨基酸具有弱发光基团,在高浓度时才可用紫外吸收检测.发酵液或细胞培养基中的许多成分也具有发色团,用吸收法检测时这些成分会干扰氨基酸的直接检测.因此,可以用安培法直接检测这类物质.积分脉冲安培检测法(IPAD)是一种强大的检测技术,它有很宽的线性范围和很低的检测限.采用AminoPac PA10阴离子交换柱可以分离所有常见的氯基酸.AAA-DirectTM将阴离子交换(AE)和IPAD两种方法结合起来.可以同时检测复杂样品中的糖、乙二醇、糖醇(醛醇)和氨基酸.  相似文献   
34.
戴安 《环境化学》2007,26(2):271-273
本文介绍了用阴离子交换色谱分离结合积分脉冲安培检测器(IPAD)金电极检测分析氨基酸的原理和应用,该方法可以检测所有携带伯胺、仲胺和羟基的有机阴离子,不需要任何形式的衍生.检测限与氨基酸衍生荧光检测技术相当.这个方法对于监测细胞培养液中营养成分的含量非常有效,也可用于不同种类的蛋白质和肽水解产物的分析.  相似文献   
35.
《污染防治技术》2009,22(3):82-82
最新科学揭示:一根碳纳米管,就是一台收音机。它不仅可以接收无线电信号、播放音乐,还可以控制纳米机器人、探测爆炸物。科学家甚至想将它嵌入人体细胞,用来实现探测药物定点释放等功能。  相似文献   
36.
用蚕豆根尖细胞微核技术检测乌鲁木齐河水质   总被引:2,自引:0,他引:2  
应用蚕豆根尖细胞微核技术对乌鲁木齐水质进行检测,测定各样点水样诱导的蚕豆根尖微核千分率及综合污染指数,并进行F检验,结果表明,各样点MCN‰有显著性差异,20个样点中有11个样点 的综合污染指数大于2,4个样点水样的综合污染指数大于3.5,和对照组相比有显著差异。所获得数据表明乌鲁木齐河水质受到较为了严重的致突变性污染。  相似文献   
37.
将稀有鮈鲫(Gobiocypris rarus)半静态暴露于重铬酸钾溶液中,研究发现稀有鮈鲫的本底微核率处于较低的水平,重铬酸钾在不同浓度和时间暴露后能明显观察到外周血红细胞微核增加。在一定条件下存在剂量-效应关系和时间-效应关系,表明稀有鮈鲫可用于鱼类外周血红细胞微核试验。试验中每尾鱼观察15000个细胞,能有效地减小试验偏差,保证试验结果的可靠性。暴露浓度大于等于0.01mg/L时,染毒组与空白组的外周血红细胞微核率有显著性差异,其微核率随染毒时间的延长呈先升高后下降的趋势,均在24h时出现所有测定时间微核率的峰值。与其他鱼类比较显示,稀有鮈鲫具有较高的敏感性,可用于遗传毒物诱发微核的监测。  相似文献   
38.
为探讨重金属Cr(VI)、Pb以及Cu对沙蚕体腔细胞DNA的毒性效应,以双齿围沙蚕为受试动物,重金属按不同剂量水平,Cr(VI):10、100和200 mg·L~(-1),Pb:5、50和100 mg·L~(-1),Cu:1、10和20 mg·L~(-1),分别胁迫沙蚕24 h,以不加任何重金属离子的海水为对照,采用单细胞凝胶电泳技术,检测其体腔细胞DNA损伤程度。结果表明,与空白对照组相比,3种重金属离子的各浓度组都能引起沙蚕体腔细胞DNA损伤,且3种重金属胁迫浓度与细胞DNA损伤程度之间存在显著的剂量-效应关系。双齿围沙蚕可以作为单细胞凝胶电泳的实验材料用于重金属所致环境污染的生物监测指示生物。  相似文献   
39.
杨峰  王京真  刘文华  # 《生态毒理学报》2017,12(2):177-181
三氯卡班(TCC)是一种被广泛应用于个人护理用品中的广谱型亲脂性杀菌剂,已在多种环境介质和生物体中检出。因其潜在的环境蓄积、生物累积和生物毒性效应,日益受到学者们的关注。借助TCC对NRK-52E(大鼠肾小管上皮细胞)的毒性暴露实验,通过检测细胞活力、以及与跨膜电阻和紧密连接相关的连接黏附分子1(JAM~(-1),junctional adhesion molecule 1)的蛋白表达水平,研究了TCC潜在的肾脏毒性效应。结果显示,10μmol·L~(-1)TCC处理48 h时培养细胞呈现不规则的集落;10μmol·L~(-1)和20μmol·L~(-1)TCC处理NRK-52E 24 h、48 h和72 h后可以显著抑制细胞生长;3.57μmol·L~(-1)TCC(生长抑制的48 hIC20)处理NRK-52E 48 h可以显著抑制细胞间紧密连接蛋白JAM~(-1)的表达量,并降低跨膜电阻,影响肾脏的屏障功能。本研究的结果能够为进一步揭示TCC对动物的毒害机制、评估其对动物的健康风险提供数据支持。  相似文献   
40.
石墨烯是一种应用广泛的新兴非金属纳米材料,具有独特的电学机械性能、超大的比表面积以及潜在的生物相容性,在材料、电子、能源、光学以及生物医学等领域得到广泛应用。与此同时,石墨烯的环境行为和生物毒性也随之引起日益广泛的关注。本文通过对石墨烯纳米材料的动物毒性、细胞毒性、毒性影响因素和毒性机制等相关研究进展进行总结。石墨烯纳米材料可通过气管滴注、吸入、静脉注射、腹腔注射以及口服等方式进入体内,通过机械屏障、血脑屏障和血液胎盘屏障等积累在肺、肝、脾等部位引起急性或者慢性损伤;目前有关石墨烯毒性机制的研究主要集中于线粒体损伤、DNA损伤、炎性反应、凋亡等终点及氧化应激参与的复杂信号通路,不同石墨烯纳米材料的浓度、尺寸、表面结构和官能团等对石墨烯的生物毒性影响不同。鉴于当前该领域研究的局限性,对石墨烯纳米材料生物毒性研究的发展方向进行了展望,进而为石墨烯材料的安全应用提供理论借鉴和实践参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号