首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   36篇
  国内免费   83篇
安全科学   31篇
环保管理   20篇
综合类   267篇
基础理论   39篇
污染及防治   8篇
评价与监测   18篇
社会与环境   12篇
灾害及防治   75篇
  2024年   7篇
  2023年   19篇
  2022年   11篇
  2021年   17篇
  2020年   18篇
  2019年   14篇
  2018年   10篇
  2017年   9篇
  2016年   19篇
  2015年   13篇
  2014年   29篇
  2013年   25篇
  2012年   19篇
  2011年   20篇
  2010年   21篇
  2009年   13篇
  2008年   21篇
  2007年   29篇
  2006年   28篇
  2005年   20篇
  2004年   10篇
  2003年   10篇
  2002年   21篇
  2001年   8篇
  2000年   11篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   9篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
排序方式: 共有470条查询结果,搜索用时 328 毫秒
151.
能见度是三大基本气象观测要素之一,是一个对航空、航海、陆上交通以及军事活动等都有重要影响的气象要素。特别是今年以来我国多个省市雾霾天气频发,持续的低能见度天气造成多起恶性交通事故发生,导致人民生命财产受到重大损失。对雾霾及大气能见度的实时观测更  相似文献   
152.
利用2019年11月1日—2020年4月30日广州主城区和广州塔121 m、454 m O3浓度同步监测数据,分析了广州市O3垂直污染分布特征及成因.结果表明:①近地面O3浓度变化主要取决于人类活动如工业排放和机动车尾气排放等,而高空O3浓度主要取决于天气过程,如辐射造成光学反应加剧和区域传输.②地面的O3浓度高于垂直观测站点,其日变化均呈单峰型分布,表现为日出后太阳辐射增强O3浓度升高,在午后14:00—15:00达到一日中的最高值.③广州塔454 m的O3浓度日变化呈明显的双峰型特征,第1个峰值出现早上7:00后,O3浓度随着日出后边界层混合抬升而升高,第2个峰值持续出现在午后,因高温、辐射导致的光化学反应剧烈生成.相对广州其他站点的第2峰值滞后的现象,可能是由于近地面臭氧生成后垂直传输到塔顶出现的垂直混合的时间差,受到边界层抬升强度不同的影响.④广州塔121 m站点,O3浓度与风速的关系非常明显,广州南部地区臭氧贡献度达到了45%.在广州的冬季和春季,其中尤以冬季12—1月,广州臭氧污染贡献源广州塔中可能 来自于南部,广州塔顶454 m来自于东南部.  相似文献   
153.
运12飞机和空中国王飞机在2007~2018年的飞机观测资料,分析了北京地区大气气溶胶近12a来的时空变化特征.结果表明,气溶胶数浓度随时间变化显示负增长趋势,而与之相反,气溶胶有效直径表现出正增长趋势.气溶胶垂直廓线的季节变化和气候条件以及边界层的季节变化紧密相关.在边界层高度,季节性气候变化和地面污染物排放强度的影响下,不同季节以及地面天气形势下的气溶胶垂直廓线特征差异也十分明显.气溶胶在边界层内混合均匀,但由于夏季边界层高度较冬季更高,气溶胶能够在更高的高度范围内混合均匀,从而降低了夏季近地面的气溶胶数浓度.此外,气溶胶在550nm的入射波长下散射系数的垂直变化与气溶胶数浓度有较好的一致性,其高值多出现在冬季以及污染物浓度较高的天气条件下.  相似文献   
154.
目的设计可用于大气边界层范围的大气污染观测平台。方法使用多旋翼无人机作为载体,集成多种大气污染物和气象要素的便携式检测设备,组建无人机观测平台。通过地面比对实验,保障所搭载的设备数据可靠,通过与大载荷系留气艇平台的垂直比对实验验证平台集成后的数据可靠性。结果对于重点观测指标PM_(2.5)而言,无人机和系留气艇所获取的垂直廓线表现出良好的一致性,各个航次的R2最低值为0.762,多数航次的组内相关系数为0.94以上。在2017年12月18日的案例中,无人机的观测数据表明,早上的大气垂直结构呈现了明显分层,0~200 m高度较为稳定的大气层结阻碍了污染物向上扩散,导致了近地面PM_(2.5)80μg/m~3的较高浓度,而下午的观测数据有助于解释污染消散。结论文中搭建的多旋翼无人机平台可以用于0~1000 m范围内的边界层观测,尽管个别航次数据和系留气艇平台仍存在差异,但现有观测结果已表明,该平台有助于研究人员了解污染事件的发生和消散,可以进一步推广应用。  相似文献   
155.
总结了国内外研究中常用的基于外场观测的臭氧污染成因分析方法。区域传输和本地生成的相对贡献以及臭氧与前体物的非线性关系是研究臭氧污染和制定控制对策的两个关键科学问题。基于对观测数据的分析,常见的量化区域传输和本地生成贡献的方法包括背景点测量法、TCEQ区域背景臭氧估算法和主成分分析区域背景臭氧估算法;用于诊断臭氧光化学生成机制的方法包括光化学指示剂比值法和基于观测的化学模型。本文对上述方法的原理和应用情况进行了总结,并对其优缺点和适用条件进行了评述,以期为环境监测资料的深入科学分析提供参考和借鉴。  相似文献   
156.
机动车排放(Vehicular Emission,VE)是地面非甲烷烃(Non-methane hydrocarbon,NMHCs)的重要人为源之一.为获得北京市交通主干道NMHCs的实际排放情况,本研究以自主研发的吸附/热解吸前处理-单光子/化学复合软电离源飞行时间质谱(SPI/CI-TOFMS)为检测手段,于2018年3月14日在北京四环、五环主干道,对C_2~C_(10)挥发性有机物进行了车载在线跟踪观测.结果表明,C_2、C_3高挥发性物质浓度较高,其次是苯系物和丁烷;从空间分布来看,NMHCs浓度在离市中心较近的四环主干道相对较高,且车流量较大的南五环公路和西四环处NMHCs污染也较为严重;从NMHCs的结构组成来看,烷烃(63%、52%)占比最多,芳香烃(23%、32%)次之,烯烃(14%、16%)最少;对NMHCs特征物质之间的线性关系和比值关系进行分析,确定机动车排放对此次观测中NMHCs的生成贡献较大;通过计算各物种臭氧生成潜势(OFP),评估出C_3、C_4烯烃类物质和苯系物为北京四、五环地区优先控制物种.  相似文献   
157.
基于站点观测和模式模拟的北京市土壤湿度   总被引:1,自引:0,他引:1  
为了获取全面的地面表层的时空变化信息,研究行政区域尺度内的水循环和能量循环,必需结合模型模拟和站点观测。基于国家气象局开发的时空连续的CLDAS土壤湿度产品,结合已获取的北京市区域内82个监测站点的逐日土壤湿度监测数据,评估CLDAS土壤湿度产品在行政区域尺度内的准确性与一致性,进一步获取北京市行政区域内的精确、全面、连续的土壤湿度时空变化信息,并在此基础上分析北京市土壤墒情时空变异特征。对比分析CLDAS产品和站点观测两种土壤湿度数据显示,北京市2013年10月1日至12月31日范围内CLDAS产品具有以下特点:CLDAS产品基本与观测数据具有一致变化的趋势,除顺义外CLDAS产品均高于观测数据。当日20∶00的土壤湿度均高于8∶00的土壤湿度,在平均气温降为0 ℃后,土壤湿度波动剧烈,20∶00与8∶00的土壤湿度出现显著差异。在时间尺度上,随着降水的减少,北京市的土壤湿度在逐渐降低。在空间尺度上,北京市干旱范围在逐渐扩大,并且呈现以昌平为中心的极旱逐渐蔓延至多个区。由于顺义区土壤相对湿度较高,呈现另外一个以顺义为中心的土壤相对湿度逐渐变小的区域,但空间范围变化较小。  相似文献   
158.
城市信号交叉口助动车违法行为特征分析   总被引:4,自引:2,他引:2  
信号交叉口违法行驶的助动车对行人和其他车辆的安全是极大的威胁,为提出有针对性的解决措施,了解助动车在交叉口的违法特征,利用心理学行为观测与分析的方法,利用视频在国内观测上海市、武汉市和临沂市的3个信号交叉口的助动车行为并进行违法特征研究。研究结果表明:3个交叉口非机动车违法率分别为50%、70%和40%,违法情况非常严重。助动车驾驶员性别、车辆动力特征、交警执法与助动车在交叉口的违法存在相关性,男性助动车骑行者较女性有更高的违法率,燃油/燃气动力助动车骑行者较其他动力类型(电力和人力)有更高的违法率,无交警执法时较有交警执法时助动车更易违法。助动车交通设施、助动车交通法规和管理、助动车骑行者、混行交通条件等因素对助动车交叉口运行安全性有显著的影响。因此,改善交通设施、提高交通管理措施、骑行者安全教育、规范车型是提高交叉口交通安全性的可行措施。  相似文献   
159.
对2009年7月9日云南姚安6.0级地震应急流动观测获取的强余震记录进行了处理和分析,包括记录的滤波及零漂处理,5.2级、4.7级、4.6级三次强余震的PGA、PGV、PGD及PSV、PSD以及对应的谱烈度(St)与相对持时(Td)等的计算及其分析.结果表明:这些强余震近场记录的滤波处理对高频成份影响较大,对低频部分影...  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号