首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   22篇
  国内免费   73篇
安全科学   13篇
环保管理   12篇
综合类   143篇
基础理论   4篇
污染及防治   52篇
社会与环境   1篇
  2024年   2篇
  2023年   5篇
  2022年   10篇
  2021年   10篇
  2020年   12篇
  2019年   8篇
  2018年   6篇
  2017年   12篇
  2016年   11篇
  2015年   12篇
  2014年   22篇
  2013年   9篇
  2012年   11篇
  2011年   18篇
  2010年   12篇
  2009年   18篇
  2008年   10篇
  2007年   13篇
  2006年   9篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有225条查询结果,搜索用时 0 毫秒
41.
姚倩  彭党聪  赵俏迪  王博 《环境科学》2017,38(12):5201-5207
采用连续进水进水方式对污水处理厂活性污泥系统中的Nitrospira富集培养并对其相关动力学参数进行研究.结果表明,在控制反应器亚硝酸盐浓度不高于2 mg·L~(-1)的条件下可以成功富集出以Nitrospira为优势种属的活性污泥,其最大比亚硝酸盐氧化速率(以N/VSS计)为48.72 mg·(g·h)~(-1).荧光原位杂交结果显示Nitrospira占活性污泥总微生物量的75%左右,而Nitrobacter仅占总微生物的0.1%.此外通过对Nitrospira在20℃时的动力学参数进行测定,结果表明Nitrospira的最适生长温度为30~35℃,温度修正系数τN为1.046,其基质半饱和常数KS和氧半饱和常数KO分别为(0.32±0.03)mg·L~(-1)和(1.52±0.09)mg·L~(-1).Nitrospira动力学参数的研究为污水处理厂的设计运行及工艺优化提供理论参考.  相似文献   
42.
为了提高污水脱氮效果,在传统A2O工艺的基础上,增加后置缺氧段并与膜生物反应器相结合,构建了AAOA-MBR污水处理中试装置,进行了中试实验。实验结果表明,在进水COD浓度为100.00~280.00 mg/L、TN浓度为18.32~31.86 mg/L、NH4+-N浓度为12.78~24.44 mg/L时,COD、TN和NH4+-N的平均去除率分别达到了90.0%、72.1%和99.0%,出水水质达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级A标准;通过多点进水优化了内源配置,节约了碳源,强化了脱氮效果;采用膜池回流供氧,可在节能的同时保证缺氧池1的缺氧环境,提高了反硝化效果。本文的研究成果为实际污水处理工程市场提供了一套高效脱氮的新工艺。  相似文献   
43.
纪磊  周集体  张秀红  肖敏 《环境科学》2007,28(1):131-136
研究了膜生物反应器中进水组成对膜污染的影响. 结果表明, 相对于正常组成来说进水中限氮或限磷引起的膜污染程度更重, 尤以进水中限氮时更为严重. 系统缺氮或缺磷时, 污泥絮体的相对憎水性和膜的憎水性增加, 使得膜和污泥之间的憎水相互作用增强, 加速了污染物在膜表面的沉积和/或吸附. 另外, 进水中限氮或限磷时, 污泥中丝状菌的数量增加, 把颗粒污泥捆扎、束缚在其立体网状结构中, 滤层结构更加致密, 孔隙度减小, 增加了膜污染阻力; 丝状菌的作用还在于它们能够将污染物牢牢地缠绕、固定在膜表面, 加强了膜表面污染物抵御曝气的水力冲刷作用的能力, 从而也加速了膜污染.  相似文献   
44.
生活污水水质对处理工艺的选择、设计参数的选取以及稳定运行十分重要。运用SPSS软件,对四川某中小城镇污水处理厂为期一年的进水指标(水量、COD、氨氮、总磷、pH、SS)进行方差和相关性分析。方差分析结果显示进水量、氨氮和SS在月份和季节之间存在显著性差异,而总磷和pH仅在月份之间存在显著差异,COD在季度和月份之间无显著性差异;指标相关性分析表明,进水量和氨氮之间呈负相关,氨氮和总磷、COD和总磷之间呈正相关,且相关性显著。在此分析的基础上对污水处理厂设计、工艺选择及运行管理提出了一些建议。  相似文献   
45.
不同流量分配比对多级A/O工艺去除有机物及脱氮的影响   总被引:1,自引:0,他引:1  
采用三级A/O工艺分段进水工艺处理低碳源生活污水,考察了进水流量分配比对系统去除有机物、硝化反硝化能力以及去除TN的影响。通过对水质指标沿程监测结果表明,不同流量分配比(4∶3∶3,5∶3∶2,6∶3∶1)对系统去除有机物及硝化效率影响不大,出水COD、氨氮分别均在30 mg/L、1 mg/L以下。但反硝化效果受流量分配比的影响较大,在流量比为5∶3∶2时,有效利用原水中碳源进行反硝化,反硝化效果最好。在流量比为5∶3∶2的情况下,TN出水为5.7 mg/L去除率为82.9%,优于流量分配比为6∶3∶1和4∶3∶3时的脱氮效果。总体而言,分段进水工艺在对碳源的有效利用及能耗节省方面优于单点进水。  相似文献   
46.
南方部分城镇污水浓度偏低,而循环式活性污泥法(CASS)能较好地处理低浓度污水,处理性能与微生物群落特征密切相关,但鲜有研究涉及其沿程微生物群落结构变化。本研究选取广东省某CASS城镇污水厂作为典型案例,分析其沿程污染物去除特征和微生物变化,从微生物学角度探讨污染物的去除机理。结果表明:低进水浓度CASS生化池沿程耗氧有机物(以COD计)、TN、NO3-N、TP主要在污泥选择区被吸附降解,进水1 h COD和TP值降至最低,NH4+-N主要在主反应区被氧化降解,生化池可去除污水中56.42%的耗氧有机物(以COD计)、41.71%的TN、77.78%的NH4+-N、99.59%的TP。生化池主要优势菌门有变形菌门、拟杆菌门、绿弯菌门和浮霉菌门,变形菌门是影响微生物多样性变化的关键菌门。属水平上,进水1 h选择区ZoogloeaAeromonasThauera丰度较高,主反应区Nitrospira丰度较高;进水结束选择区Nitrospira丰度较高,主反应区TerrimonasLactobacillus丰度较高;沉淀1 h选择区Thauera丰度提高,主反应区Nitrosomonas丰度较高,主要发生氨氧化;闲置结束选择区脱氮菌类型多丰度高,主反应区SulfuritaleaHaliangiumZoogloea丰度较高。沿程功能性微生物丰度变化与污染物浓度变化相对应。NO3-N对微生物群落结构的塑造影响最显著(解释度为38.92%)。氮代谢途径表明沿程主反应区均发生全程硝化反硝化,选择区均发生短程硝化和全程反硝化,除进水1 h外,其余阶段选择区的反硝化功能基因丰度均比主反应区高。  相似文献   
47.
连续流分段进水生物脱氮工艺控制要点及优化   总被引:1,自引:0,他引:1  
主要介绍了分段进水生物脱氮工艺的系统工作原理及工艺特性,并探讨了该工艺运行操作和设计的几个重要影响因素,如进水流量分配比、溶解氧、污泥回流比、C/N比等,并在此基础上讨论了分段进水生物脱氮工艺的优化控制对策.  相似文献   
48.
采用6个缺氧-好氧SBR反应器,考察了进水时间及溶解氧(DO)浓度对活性污泥系统中底物贮存的影响.缺氧进水条件下,进水时间的长短对底物贮存影响并不明显.进水时间由10min延长至60,90,120min时,各SBR系统内聚-β-羟基烷酸(PHA)贮存量依次小幅下降,最大差值为0.21mmolC/L, fPHB/HAc值在0.84~0.90范围内波动. 好氧曝气阶段控制低DO(0.5mg/L)运行比高DO(2.0mg/L)运行条件更有利于提高PHA的贮存量,90min进水时,高、低DO条件下PHA的平均合成量分别为3.1,5.0mmolC/L.而突然将进水时间90min缩短至10min,使得高、低DO系统中底物贮存量均增大,而高DO系统中底物贮存量的增长更为明显.  相似文献   
49.
SBBR同步硝化反硝化处理生活污水的影响因素   总被引:38,自引:1,他引:38  
序批式生物膜反应器SBBR采用塑料鲍尔环填料,在有氧情况下用于处理实际生活污水.该反应器能很好地创造缺氧微环境,载体生物膜具有吸附储碳能力,出现了良好的同步硝化和反硝化现象.反应器中溶解氧浓度在较大的范围内(0.8~4.0 mg·L-1)能有效地实现同步硝化和反硝化.当溶解氧浓度大于4.0 mg·L-1后,TN容积去除率大幅下降,出水TN大幅上升.增加载体生物膜厚度有利于同步硝化和反硝化.进水浓度基本不影响脱氮的效率,但出水TN随进水浓度增加而升高,建议原水浓度高时可增加后续脱氮处理或减少进水量来满足出水要求.优化运行方法和参数后,SBBR连续运行的TN去除率可稳定在74%~82%.  相似文献   
50.
正6月26日,佛山水环境整治工作会议召开。会议总结了前期工作并部署下一阶段任务。佛山市副市长许国在会上指出,全市各区必须拿出破釜沉舟、背水一战的斗志,拿出更多有针对性的措施、更强有力的手段,围绕建、关、清、督、立五字方针,全力以赴大干水环境整治工作。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号