首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1363篇
  免费   157篇
  国内免费   664篇
安全科学   173篇
废物处理   129篇
环保管理   77篇
综合类   1233篇
基础理论   215篇
污染及防治   316篇
评价与监测   38篇
社会与环境   1篇
灾害及防治   2篇
  2024年   15篇
  2023年   85篇
  2022年   95篇
  2021年   108篇
  2020年   76篇
  2019年   86篇
  2018年   54篇
  2017年   63篇
  2016年   70篇
  2015年   97篇
  2014年   157篇
  2013年   115篇
  2012年   110篇
  2011年   91篇
  2010年   96篇
  2009年   120篇
  2008年   92篇
  2007年   92篇
  2006年   69篇
  2005年   75篇
  2004年   59篇
  2003年   59篇
  2002年   40篇
  2001年   31篇
  2000年   30篇
  1999年   30篇
  1998年   31篇
  1997年   27篇
  1996年   22篇
  1995年   18篇
  1994年   13篇
  1993年   11篇
  1992年   15篇
  1991年   8篇
  1990年   11篇
  1989年   11篇
  1988年   1篇
  1987年   1篇
排序方式: 共有2184条查询结果,搜索用时 234 毫秒
471.
472.
传统观点认为土壤氮素转化要有微生物的参与,但越来越多的研究发现,非生物转化在一些特定条件下同样发挥着不可忽略的作用,该途径下N2O产生量甚至超过生物学过程而占主导作用.作为一种重要的非生物土壤氮素转化方式,化学反硝化产生途径虽然已经被发现近一个世纪,但在现代生态学研究中通常因研究分散而往往被忽视.鉴于此,对土壤化学反硝化及N2O产生机制、影响因素的研究进展进行总结,并对化学反硝化的不足和薄弱环节提出展望.结果表明:土壤化学反硝化及N2O产生的机制主要包括高价氮还原和羟胺分解两种作用;影响土壤化学反硝化的因素主要包括pH、温度、反应底物浓度、有机质、固相界面及金属离子,如高pH、固相界面和Cu2+的存在均会促进化学反硝化过程;不同形态Fe直接参与化学反硝化生成N2O的途径不同,主要包括Fe2+还原NO2-和NO3-,Fe3+氧化NH2OH.然而,现有研究对于化学反硝化机理的边界划分等问题仍不明确,因此,建议强化羟胺在土壤化学反硝化途径中作用机理的基础性研究,以及多因素综合影响下化学反硝化强度和N2O产生特征方面的应用性研究.   相似文献   
473.
杨宁  李飞  杨志敏  曹威  苑宝玲 《中国环境科学》2020,40(11):4770-4778
研究了维生素B12(VB12)催化纳米零价铁(nFe0)仿生还原降解工业级全氟辛磺酸(PFOS).结果表明,VB12催化nFe0不仅能够降解支链PFOS,而且也能够同时降解直链PFOS,这是首次报道直链PFOS的仿生还原降解.PFOS降解过程可用准一级动力学模型模拟,且升高温度有利于PFOS的还原降解去除和脱氟.超高效液相色谱-四级杆飞行时间质谱(UPLC-QTOF)定性分析表明,PFOS仿生降解产物包括4种全氟磺酸类(全氟碳链长度为C4~C7)、9种全氟羧酸类(全氟碳链长度为C2~C7、C10、C11和C13)和5种多氟代酸类(即H-全氟己酸、H-全氟庚酸、H-全氟辛酸、H2-全氟辛酸和H-全氟辛磺酸)化合物.全氟磺酸类和全氟羧酸类化合物首次在VB12仿生催化降解PFOS的产物之中检出,其中全氟十一烷酸(C10)、全氟十二烷酸(C11)和全氟十四烷酸(C13)等长链化合物第一次在降解PFOS过程中被发现.在降解样中检出的H-全氟烷烃(链长为C2~C7、C10、C11和C13)是否是PFOS的仿生降解产物,还有待进一步研究确认.  相似文献   
474.
亚铁氧化反硝化过程,是指亚铁氧化和NO3--N还原相结合的生物矿化过程,该过程不仅可以实现水中NO3--N脱除,还可以得到对多种污染物有较强吸附去除能力的铁矿物。构建了亚铁氧化反硝化过程的连续流式生物膜反应器,分析了反应器运行3个月后内部生成的颗粒物特性及其对重金属镉(Cd)的吸附效果。结果表明:反应器内不同位置会生成颗粒成分不同的铁矿物,下部和中部以菱铁矿为主,上部以针铁矿为主。这些颗粒均具有较大的比表面积和多种有利于吸附的有机官能团,对于水中Cd2+具有较强的吸附能力,不同位置形成的颗粒物的吸附去除率从大到小依次为出水>上部>中部>下部,去除率均可达到84%以上,吸附动力学和热力学方程更符合准二级动力学方程和Freundlich模型。  相似文献   
475.
476.
477.
Cr(VI)是一种毒性极强的重金属,利用微生物还原Cr(VI)为Cr(III)是解决Cr(VI)污染的一条有效途径。菌株Enterobacter sp. L6是一株分离自海洋沉积物中的异化铁还原细菌。接种时细胞密度A600为(0.25±0.03),培养12 h,A600达到(1.04±0.05),累积产生Fe(II)浓度为(0.80±0.03)mmol/L;随着培养时间的延长,细胞密度A600和累积产生Fe(II)浓度开始下降;培养36 h时,细胞密度A600为(0.81±0.04),累积Fe(II)浓度(0.63±0.01)mmol/L。在厌氧培养过程中,菌株L6细胞生长与异化还原Fe(III)性质存在明显的偶联关系。利用菌株L6的异化铁还原性质还原Cr(VI)的实验结果表明,在Cr(VI)浓度0~24 mg/L范围内,异化铁还原细菌L6都能进行细胞生长并还原Cr(VI)。Cr(VI)浓度为4、8和12 mg/L时,菌株L6对Cr(VI)还原率可达到100%,当Cr(VI)浓度为16 mg/L时,Cr(VI)还原率是参比[未添加Fe(III)]的2.11倍。Cr(VI)浓度为20、24 mg/L时,仍能够还原Cr(VI)。以Fe(III)为电子受体的异化铁还原细菌能明显提高Cr(VI)还原率,这为利用微生物修复Cr(VI)污染提供实验数据支持。  相似文献   
478.
黄钾铁矾能够通过吸附和共沉淀作用固定酸性矿山废水(AMD)中的重(类)金属(如砷),降低其迁移性和生物可利用性.草酸盐广泛存在于天然水环境中,其具有的羧酸官能团能改变铁矿物的稳定性,进而影响吸持的重(类)金属的再分配行为.利用水热法合成含As(V)黄钾铁矾,探究其在不同草酸盐浓度与pH条件下的溶解、重结晶和共沉淀As(V)的行为.研究结果表明,草酸盐与含As(V)黄钾铁矾表面Fe(III)活性位点配位形成的可溶性强络合物是促进矿物溶解的第一步和关键;在pH 2.5时,含As(V)黄钾铁矾的溶解速率随草酸盐浓度增加而增加,伴随大量As(V)释放到溶液,反应过程中只有少量As(V)重新吸附到固相上,这是由于草酸盐与As(V)竞争矿物表面的同一活性位点;在pH 6.5条件下,草酸盐促进含As(V)黄钾铁矾的重结晶,经X射线衍射分析表明针铁矿和纤铁矿为主要产物,能有效地吸附释放的As(V).研究结果有助于揭示在AMD环境下黄钾铁矾沉积物与含羧酸官能团有机酸共存时对As(V)的释放和固定机理,对AMD环境中As(V)污染控制有重要意义.  相似文献   
479.
本文以三氧化二铝小球为载体,成功制备出负载型纳米零价铁(Fe@Al_2O_3)。利用复合材料还原水相中的硝基苯,研究了铁投加量和硝基苯初始浓度对硝基苯去除率的影响,并借助GC-MS分析硝基苯可能的降解途径。结果表明:负载后零价铁颗粒平均粒径在100nm左右,均匀分散在Al_2O_3表面及内部孔道上;Fe@Al_2O_3在空气/水条件保存后,硝基苯去除率仍达到90.44%,抗氧化能力明显优于未负载的NZVI;零价铁还原硝基苯生成苯胺是主要反应,伴随着氧化副反应生成微量的无机氮。  相似文献   
480.
本文研究铜绿微囊藻生长与铁氧化物吸附解吸磷的相互作用机制,旨在为富营养化池塘、水库调控和治理提供理论指导。采用化学方法合成铁氧化物并对其进行表征,研究铁氧化物对磷的吸附特性和铜绿微囊藻生长与铁氧化物吸附解吸磷的相互作用。结果表明铁氧化物的物相组成与自然界土壤和底泥中铁氧化物存在形态相似;铁氧化物对磷的吸附属于专性吸附,吸附等温曲线符合Langmuir方程。在含铁氧化物的BG11培养基中培养铜绿微囊藻,铁氧化物对磷的吸附导致培养液中总磷(TP)和水溶性磷(SWP)浓度降低,抑制铜绿微囊藻的生长。铜绿微囊藻在含吸附磷的铁氧化物而无磷的BG11培养基(4.02 < pH < 10.05)中能够正常生长,藻生长导致溶液pH升高是诱导铁氧化物解吸磷的主要因素,铜绿微囊藻光合作用释放的氧气可以抑制三价铁向二价铁的转化。针对铜绿微囊藻诱导铁氧化物释放磷并被其吸收的机制,要控制富营养化水体蓝藻爆发,除控制外源磷输入外,应该抑制底泥中铁磷释放,或通过藻细胞的收集和移除来降低底泥中铁氧化物的磷负荷。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号