首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   121篇
  国内免费   223篇
安全科学   78篇
废物处理   61篇
环保管理   123篇
综合类   587篇
基础理论   141篇
污染及防治   136篇
评价与监测   29篇
社会与环境   3篇
灾害及防治   12篇
  2024年   10篇
  2023年   33篇
  2022年   39篇
  2021年   58篇
  2020年   38篇
  2019年   48篇
  2018年   25篇
  2017年   20篇
  2016年   22篇
  2015年   45篇
  2014年   76篇
  2013年   71篇
  2012年   54篇
  2011年   81篇
  2010年   52篇
  2009年   60篇
  2008年   54篇
  2007年   54篇
  2006年   41篇
  2005年   32篇
  2004年   27篇
  2003年   26篇
  2002年   19篇
  2001年   18篇
  2000年   17篇
  1999年   15篇
  1998年   28篇
  1997年   13篇
  1996年   15篇
  1995年   13篇
  1994年   22篇
  1993年   8篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   19篇
排序方式: 共有1170条查询结果,搜索用时 31 毫秒
101.
莫澄绮 《环境教育》2015,(Z1):118-119
<正>一天傍晚,我和妈妈漫步在绍兴世贸广场的人行道上,一片月光懒懒地洒落在肩头。"呀!妈妈快看,那是什么?"我指着一棵小树问。只见沿路小树的树枝上都挂着一个塑料袋儿,下面连着一根管子,管子的另一头插在小树的身上,水晶般的液体正在缓缓地流向树的身体。"好奇怪呀!"妈妈仔细地打量了一番,也不知道其中的原因。难道是这棵树生病了?像人一样要挂葡萄糖之类的盐水?可为什么这么长的人行道上,所有的树都挂了一个这样奇特的"盐水瓶"?难道他  相似文献   
102.
以江汉盆地江陵凹陷高盐度卤水层为例,采用数值模拟的方法研究了超临界CO2灌注到深部咸水层中毛细压力对盐沉淀的影响及其机理。结果表明:低毛细压力作用下,岩盐固体饱和度与盐度存在着显著的线性关系,高毛细压力作用下,盐度不再是控制岩盐沉淀量的主导因素,即便是较低的盐度也会造成盐沉淀的严重积累,直至完全堵塞孔喉;通过液体流速曲线分段解析,发现较高的毛细压力虽会提高滞留咸水量,但持续的咸水回流对注入性严重受损起着致命作用;另外,盐沉淀还受到注入速率的控制,随CO2注入速率的增加而降低,因此以较高的速率注入CO2可有效缓解盐沉淀的影响。  相似文献   
103.
过量表达SlWD6基因增强番茄抗旱和耐盐功能   总被引:1,自引:0,他引:1  
WD40蛋白广泛存在于真核生物体内,在生物体内协助细胞行使多种功能,目前关于WD40蛋白的研究多集中在拟南芥菜和水稻中.生物信息学分析显示,Sl WD6蛋白包含两个保守的WD-repeat结构域,属于WD40家族.为了解番茄中Sl WD6基因的功能,采用RT-PCR方法检测番茄的根、茎、叶、花和不同发育时期果实中Sl WD6基因表达量.利用RT-PCR方法获得Sl WD6基因全长,并且构建Sl WD6过量表达载体,通过农杆菌介导法获得转基因植株,利用Realtime PCR检测3个独立的转基因株系(WD6-393、WD6-418和WD6-421)中Sl WD6基因的表达量,并进行耐盐和抗旱性分析.结果显示,番茄Sl WD6基因为组成型表达,果实各时期表达量较高,在红果时期表达量达到最高;转基因株系中Sl WD6基因的表达量显著高于野生型;在干旱和高盐胁迫下,转基因植株叶片脯氨酸(Pro)含量显著高于野生型,丙二醛(MDA)含量与野生型相比则显著降低.用Na Cl和甘露醇介导耐盐和干旱胁迫,Sl WD6转基因植株T2代种子的根长和苗长显著高于野生型植株.综上,Sl WD6基因的过量表达能够显著增强番茄的抗旱和耐盐功能.  相似文献   
104.
铁基硅盐对土壤环境镉砷赋存形态及转化影响   总被引:1,自引:0,他引:1  
为探明铁基硅盐对土壤镉砷赋存形态影响及各形态间转化规律,采用室内长期淹水培养吸附实验,研究不同比例铁硅材料对土壤离子态镉砷活性影响;筛选适宜铁基硅盐(FS)配比同时添加腐殖酸(FSC)和金属氧化物(FSCa),明确复配处理土壤中镉砷分级形态转化程度.结果显示,铁:硅比值增加10%,土壤pH值平均降低0.35;F2-S8处理土壤离子态镉降幅71%;F10-S0处理土壤离子态砷降低59.9%,离子态镉砷含量与硅酸盐-铁盐施用量互呈反比;处理F4-S6和F6-S4之间镉、砷钝化率产生交点,约为25%~30%.土壤中镉主要以可溶态为主,占比58%;砷主要以铁铝氧化态和钙结合态为主,占比40%和23%.铁硅比例为5:5或5.5:4.5左右复配能有效将铝结合态砷和铁铝氧化态砷转变为钙结合态砷和残渣态砷,可溶态镉转化为碳酸盐结合态镉以及铁锰氧化态镉,同步降低土壤中镉砷的活性.  相似文献   
105.
徐敏  杜洪宇  郭家明  赵晓丹  卢卫  孙超  陈宇  周振 《环境工程》2022,40(10):169-175
基于水质特性分析,以物质资源化为核心,构建了脱硫废水强化递级分盐预处理-膜浓缩电解制氯零排放工艺,并进行了35 d的中试试验(500 L/d)。结果表明:该工艺能够在稳定运行的基础上实现污染物的高效去除和物质的充分资源化。预处理模块出水SS、Mg2+、SO2-4和Ca2+去除率分别为100%、96.6%、99.8%和98.9%;各处理单元沉淀物分别为CaSO4、Mg(OH)2、钙矾石和CaCO3,其纯度可分别达到86.9%、99.8%、88.3%和99.9%,可作为脱硫石膏、除磷剂、阻燃剂和脱硫剂进行资源化利用;膜浓缩电解制氯模块所得次氯酸钠符合GB 19106-2013《次氯酸钠》中A型Ⅲ级要求,可用于消毒、杀菌与水处理。  相似文献   
106.
厌氧消化生产甲烷是实现剩余污泥(WAS)资源化的重要技术,水解阶段是WAS厌氧资源化的限速步骤。WAS中的酸性多糖(如藻酸盐和半乳糖醛酸等)能够与水中Ca2+等二价阳离子形成凝胶类物质,具有维持污泥结构并阻碍微生物水解的作用,被认为是结构性胞外聚合物的主要组分。首先利用藻酸盐为底物经过恒化器培养得到高活性的藻酸盐降解菌群(ADC)。结果表明:投加ADC菌群能够明显提高剩余污泥(WAS)厌氧消化的功能,即在接种比[m(ADC)∶m(VSS)]为0.03 g/g时,污泥的甲烷产量提高了53.6%。进一步分析表明,该菌群对WAS的几种典型有机成分(聚半乳糖醛酸、葡聚糖和酪蛋白等)均具有较好的厌氧降解能力。Illumina Miseq高通量测序结果表明该ADC菌群以拟杆菌属(Bacteroides,96.3%)为主。该成果为强化剩余污泥厌氧发酵产甲烷提供了一种新的微生物方法。  相似文献   
107.
天津塘沽作为滨海新区核心区,是目前天津发展最快的地区之一。由于本区盐碱土壤等自然条件,污水中盐分含量较高,制约了废水的回用。本文通过模拟人工湿地实验,比较了芦苇(Phragmites australis)、盐地碱篷(Suaeda salsa)、碱蒿(Artemisia anethifo原lia)、黄花鸢尾(Iris wilsonii)、盐角草(Salicornia europaea)和大米草(Spartina anglica)等耐盐植物对轻污染水体中高浓度氯离子的去除能力,筛选出去除能力较强的植物,并确定植物对盐分去除率达到最大时的生态系统条件。结果表明,适合人工湿地的耐盐碱植物对氯离子的去除效果依次为:芦苇&gt;盐地碱篷&gt;碱蒿&gt;黄花鸢尾&gt;盐角草&gt;大米草,停留时间一般在第4d时可达到平衡。该研究为利用人工湿地处理高盐废水提供了科学依据。  相似文献   
108.
张杰  蒲颖 《环境教育》2014,(1):119-122
红树林湿地生态系统是典型的具备生物多样性的生态系统。这里不仅可以观察到神奇的“植物胎生现象”、红树的泌盐现象、发达的气生根等,还可以观察到滩涂鱼、招潮蟹以及各种美丽、可爱的鸟类,、所有这些不仅仅给人以美的感受,还是极佳的环境教育资源。  相似文献   
109.
从上海老港垃圾填埋场区土壤中分离出一株降解苯酚的中度嗜盐菌,经16S rRNA序列分析鉴定为Virgibacillu sp.PDBF2(Gen Bank序列号为KM658979)。该菌株在8%的总盐度下最高可耐受1 400 mg/L的苯酚,能有效降解的苯酚浓度达1 200 mg/L。PDB-F2可在5%~15%的高盐度范围内有效去除初始浓度为500 mg/L的苯酚。培养温度和pH对菌株PDB-F2生长和苯酚降解率具有较大影响,其最佳生长和降解条件为温度30℃、pH 6.5~7.5。PDB-F2在耐盐能力和苯酚降解能力上的优势使其在高盐含酚废水生物处理中具有极大的应用潜力。  相似文献   
110.
三聚磷酸钠是应用广泛、性能优良的洗涤助剂,它的大量使用,引起了水质的“富营养”化问题,造成了水环境的污染,使三聚磷酸钠替代物的研究成为世界性课题。这方面报道很多,但从综合性能来看,目前还没有理想的替代物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号