首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5290篇
  免费   635篇
  国内免费   2245篇
安全科学   451篇
废物处理   591篇
环保管理   409篇
综合类   4649篇
基础理论   572篇
污染及防治   1368篇
评价与监测   78篇
社会与环境   15篇
灾害及防治   37篇
  2024年   64篇
  2023年   218篇
  2022年   290篇
  2021年   316篇
  2020年   273篇
  2019年   331篇
  2018年   203篇
  2017年   216篇
  2016年   245篇
  2015年   293篇
  2014年   502篇
  2013年   352篇
  2012年   373篇
  2011年   361篇
  2010年   355篇
  2009年   386篇
  2008年   383篇
  2007年   378篇
  2006年   380篇
  2005年   325篇
  2004年   287篇
  2003年   293篇
  2002年   228篇
  2001年   195篇
  2000年   165篇
  1999年   134篇
  1998年   107篇
  1997年   82篇
  1996年   64篇
  1995年   80篇
  1994年   76篇
  1993年   69篇
  1992年   43篇
  1991年   32篇
  1990年   37篇
  1989年   28篇
  1988年   4篇
  1987年   2篇
排序方式: 共有8170条查询结果,搜索用时 125 毫秒
471.
采用Fenton试剂氧化法处理分散橙、分散紫和分散蓝3种染料结晶废母液。研究了H2O2加入量、n(H2O2)#x02236;n(Fe2+)和废母液pH对COD去除率或TOC去除率的影响。对TOC去除反应分段进行了动力学方程拟合,并探讨了反应机理。实验得到的分散橙、分散紫和分散蓝的废母液处理工艺条件:H2O2加入量分别为264.4,352.9,441.2mmol/L;n(H2O2)#x02236;n(Fe2+)分别为20,10,20;废母液pH=3。3种废母液在0~20min和20~120min两个阶段的反应与二级动力学拟合方程的相关性最好。3种废母液经Fenton试剂氧化处理后,部分有机物降解为小分子有机酸,部分有机物完全矿化。  相似文献   
472.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   
473.
O3-H2O2氧化法处理印染废水   总被引:2,自引:0,他引:2       下载免费PDF全文
彭人勇  邱晓 《化工环保》2013,33(4):308-311
采用O3-H2O2氧化法对印染废水进行氧化处理,比较了O3氧化法和O3-H2O2氧化法对印染废水的处理效果,考察了初始废水pH、H2O2加入量、O3流量和反应时间对废水的色度去除率和COD去除率的影响。实验结果表明:O3-H2O2氧化法对废水的COD和色度的去除效果比O3氧化法更好;在初始废水pH为11、H2O2加入量为13mmol/L、O3流量为6g/h、反应时间为60min的最佳工艺条件下,处理后废水COD为61.50mg/L,COD去除率为95.73%,废水色度为5倍,色度去除率为99.75%,TOC为37.84mg/L,TOC去除率为85.10%,BOD5为22.76mg/L,BOD5去除率为90.20%,BOD5/COD为0.37。  相似文献   
474.
叶晶菁 《化工环保》2013,(4):303+348
分解有机污染物的廉价方法Chemical Engineering,2013,120(3):15美国MIOX公司将紫外线与氯(而不是过氧化物)联用,开发了一种消除水中有机污染物的紫外辐射-氧化技术。该公司的高级氧化(AOP)工艺有望比传统的AOP处理方法更为廉价。该AOP工艺将紫外氧化法与用于给水消毒的在线氯气发生系统相结合,后者是该公司的主营业务。在线氯气  相似文献   
475.
为评价微生物在不同氧化还原环境下对含硫煤矸石中污染物释放的作用,通过设置氧化处理、氧化灭菌处理、还原处理和还原灭菌处理4组处理方式对煤矸石进行连续浸提实验,并测定0、1、3、6、9d后各处理煤矸石浸出液的pH、电导率(EC)、氧化还原电位(Eh)、总溶解性固体(TDS)、金属离子(Fe3+、Mn2+、Cu2+、Zn2+)和阴离子(SO2-4、F-)等特征污染指标。结果表明:氧化环境下,灭菌处理能抑制煤矸石氧化酸化,提高煤矸石浸出液的pH,降低浸出液EC、TDS,并明显降低煤矸石浸出液中Fe3+的溶出浓度,对Mn2+、Cu2+、F-和SO2-4等特征污染离子的溶出也有一定的抑制效果,且随着浸提时间的延长,这种抑制效应日趋加强;而还原环境下,灭菌处理却在一定程度上减弱了还原环境对煤矸石中污染物释放的抑制作用。综上表明,灭菌与否对不同氧化还原环境下含硫煤矸石污染物的释放有重要影响。因此,可以通过工程手段调控矿山环境中微生物活性或类群,对含硫煤矸石污染进行有效的原位控制或治理。  相似文献   
476.
分析了碱性介质臭氧降解烷基多苷(APG)的机制,进行了臭氧氧化降解APG的试验研究。结果表明,臭氧对APG有较强的氧化能力;有机质初始浓度高有利于其氧化降解;初始阶段降解速率较快,当COD降解率达80%时,再增加臭氧的通入量,降解变慢;臭氧氧化处理APG过程中泡沫的产生、存在的时间及消除与APG的浓度、氧化降解程度密切相关。  相似文献   
477.
对臭氧氧化去除焦化废水生化出水COD的反应动力学及其影响因素进行了实验研究,结果表明,在臭氧投加量为8.50mg/min,反应温度为20'E和初始pH为10.61条件下,对COD的降解符合表观一级反应动力学模型,其相关系数R。=0.9991,表观反应速率常数k。。=1.01×10^-3s-1。该条件下,臭氧氧化对COD的降解主要来源于高活性羟基自由基的强氧化作用。在不同的臭氧投加量(4.25~12.75mg/min)、不同的反应温度(10~40℃)和不同的初始pH(3.76~12.53)下,COD的降解也同样遵循一级反应动力学规律。随着臭氧投加量的增大,COD降解的表观反应速率常数从(0.554×10^-3)s-1增加到(1.06×10&-3)s-1;随着反应温度的升高,表观反应速率常数从(0.427×10^-3)s-1增加到(1.40×10-3)s-1,温度越高反应速率提高的幅度却越小;在初始pH3.76~10.61范围内,表观反应速率常数从(0.218×10^-3)s-1增加到(1.01×10^-3)s-1,在初始pH为12.53时表观反应速率常数下降到(0.857×10^-3)s-1。  相似文献   
478.
以市售活性炭、硅藻土和氧化铝小球为载体,考察了负载铁基活性组分对催化臭氧化过程中溴酸盐的控制情况,其中,铁基复合氧化铝小球体现出更好的溴酸盐还原特性和催化剂稳定性,证实催化剂中铁氧化物是溴酸盐得到有效控制的主要活性组分。进一步考察了铁基复合氧化铝小球催化臭氧化处理实际原水过程中对溴酸盐的生成控制,以及反应过程中溶解性有机碳(DOC)的去除情况。结果表明,与单独臭氧化相比,该催化剂既能有效去除水中的溶解性有机物,又能明显抑制溴酸盐的生成,反应50h,其活性并没有明显下降。催化剂失活主要归因于吸附位点数量的下降,可以通过负载铁氧化物来实现催化剂的再生。  相似文献   
479.
为有效处理含异噁草酮除草剂废水,以Sb掺杂Ti/SnO2电极为阳极,不锈钢板为阴极,采用电催化氧化技术对异噁草酮废水进行降解,研究了不同影响因素对异噁草酮去除率的影响,并分析了异噁草酮的降解效果。结果表明,当异噁草酮初始浓度为100mg/L、电流密度为20mA/cm2、电解质投加量为0.10mol/L,反应120min后,异噁草酮去除率达到94%,此时TOC去除率为57.9%,能耗为25kWh/m2,且废水的可生化性能显著提高。  相似文献   
480.
采用电沉积法制备铈修饰的PbO2/C电极,通过SEM、XRD、XPS及循环伏安对PbO2/C、Ce-PbO2/C电极进行表征,结果表明,Ce-PbO2/C电极比PbO2/C颗粒细小,表面均匀致密,电化学氧化能力较强,修饰电极中Ce以CeO2的形态存在。以Ce-PbO2/C为工作电极,电解浓度为1 000 mg/L的高盐酸性红B模拟活性染料废水,考察了电压、pH、电解质浓度、极间距对脱色率、氨氮去除率及COD去除率的影响。确定适宜工艺条件为:初始酸性红B溶液浓度为1 000 mg/L,pH值为6,电压10 V,电解时间1 h,电极间距1.5 cm,该条件下脱色率、氨氮去除率和COD去除率分别为99.98%、97.23%和90.17%。通过UV-Vis及GC-MS初步分析了降解过程可能存在的中间产物及降解途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号