首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8647篇
  免费   768篇
  国内免费   2472篇
安全科学   382篇
废物处理   381篇
环保管理   926篇
综合类   6933篇
基础理论   1151篇
污染及防治   1506篇
评价与监测   520篇
社会与环境   60篇
灾害及防治   28篇
  2024年   76篇
  2023年   301篇
  2022年   320篇
  2021年   377篇
  2020年   304篇
  2019年   333篇
  2018年   238篇
  2017年   278篇
  2016年   373篇
  2015年   387篇
  2014年   688篇
  2013年   546篇
  2012年   546篇
  2011年   577篇
  2010年   450篇
  2009年   497篇
  2008年   563篇
  2007年   656篇
  2006年   457篇
  2005年   419篇
  2004年   581篇
  2003年   468篇
  2002年   354篇
  2001年   293篇
  2000年   279篇
  1999年   231篇
  1998年   235篇
  1997年   161篇
  1996年   183篇
  1995年   142篇
  1994年   125篇
  1993年   120篇
  1992年   72篇
  1991年   71篇
  1990年   83篇
  1989年   89篇
  1988年   3篇
  1987年   1篇
  1986年   9篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
为实现氯酚(CPs)的高效降解和资源化利用,探究微生物燃料电池(MFC)体系优势功能菌,揭示生物降解路径.接种、驯化长春市南郊污水处理厂的厌氧活性污泥,获得生物膜阳极以构筑MFC-2,4,6-TCP体系,基于扫描电子电镜(SEM)、16S rRNA分析测序方法,考察生物膜阳极微生物的附着情况和优势菌种,基于电化学阻抗(EIS)、循环伏安(CV)和线性扫描伏安(LSV)等电化学分析手段,表征生物阳极的电化学性能和氧化还原能力.结果表明,生物膜阳极微生物种类丰富,其中Geobacter和Acinetobacter分别为MFC-2,4,6-TCP体系产电和降解驯化期的优势功能菌,体系最大输出电压可达0.55 V,最大功率密度为428.65 mW·m-2,对2,4,6-TCP的降解和矿化率可达97.5%和85.4%.随着MFC循环次数的增加,微生物代谢途径多样化,产电菌逐渐演替为协同菌,且优势功能菌对2,4,6-TCP降解的中间产物(环己醇),其毒性远低于氯酚或苯酚,更利于被微生物利用.该结果可为氯酚废水的实际处理提供新策略和技术参考.  相似文献   
942.
为研究移动平均窗口法与欧6修正稿提出的累积平均法计算结果有明显差异的原因,按国6试验要求在海拔为1980 m的高原地区进行实际行驶污染物排放(RDE)试验,通过基于数据点使用次数的参与率分析不同方法对排放结果的影响.结果显示:计算市区排放时,累积平均法中排放恶劣的试验早期数据点参与率较高,而窗口法使用了部分相对正加速度(RPA)较低的市郊数据点,使累积平均法计算得到的市区 污染物排放因子升高.计算总行程排放时,窗口法中高速路段中部数据点的参与率明显高于累积平均法,若这些数据点排放恶劣,窗口法计算得到的排放因子有高于累积平均法的可能.使用累积平均法计算污染物排放因子时,为了规范调减排放的条件,应该对全球轻型车统一测试循环(WLTC)测试海拔有一定的限制.  相似文献   
943.
采用阳极氧化-涂覆煅烧法成功制备了g-C3N4/TiO2纳米管阵列(g-C3N4/TNAs)光阳极,并通过扫描电镜、X射线衍射仪、X射线光电子能谱仪、紫外可见漫反射光谱仪、光致发光光谱仪和电化学工作站等表征分析了g-C3N4/TNAs光阳极的形貌、晶形结构、光学特性和光电化学性能.表征结果证实,g-C3N4的引入通过缩小禁带宽度扩宽了TNAs的可见光响应范围,提高了光电流密度和光生电子寿命,促进了光生电子和空穴的分离.g-C3N4/TNAs光阳极在光电催化体系内对邻氯硝基苯(o-CNB)的降解效率高于其在光催化和电催化体系中对o-CNB的降解效率,且具有良好的稳定性和可重复性.活性物质捕获实验、电子自旋共振测试和能带结构分析表明,g-C3N4/TNAs光阳极中TNAs和g-C3N4之间存在Z型异质结相互作用机制.在光电催化体系内降解o-CNB的主要活性物质是?O2-?OH和光生空穴,而光生电子是次要的活性物质.  相似文献   
944.
极地环境微生物具有独特而丰富的多样性,是亟待开发的资源宝库.随着人类影响范围的扩大,极地环境中持久性有机污染物与石油 资源开采等造成的环境污染不容忽视,而利用土著微生物进行生物修复是一种理想的方法.为克服传统的基于富集驯化的稀释平板法分离 降解菌存在耗时长、筛选结果单一等缺点,建立了一种单细胞水平微流体筛选(Single-cell Level Isolation with Microfluidics,SLIM)技术.以北极沉积物为菌源,以联苯为底物,利用该技术成功筛选得到9株菌株,分属于4个菌属:StreptomycesMicrococcusDermacoccusAspergillus;通过 稀释平板法筛选得到3株菌株,分属于AcidovoraxChryseobacteriumNocardia.通过两种方法得到的菌株完全不同.系统发育分析表明,SLIM技术筛选得到的菌株具有更加丰富的微生物多样性.通过对沉积物及各代富集驯化培养物的16S rRNA基因高通量测序发现,并非所有富集的菌属都能被稀释平板法分离,通过SLIM技术筛选得到的菌属在所有样品中的相对丰度都很低.本文建立的SLIM技术从单细胞水平实现了目标菌种的筛选,相比于稀释平板法,具有效率更高的优点,同时避免了菌种间竞争等造成的分离困难.本研究为极地环境中有机污染的生物修复及“微生物暗物质”资源的挖掘提供了新的思路与方法.  相似文献   
945.
在自行构建的人工湿地-微生物燃料电池(CW-MFC)系统中,以砾石填料为对照,研究了FeS对活性艳红X-3B脱色效果及降解过程的影响.结果表明,加在底层区域的FeS能够显著提高CW-MFC对活性艳红X-3B的脱色效果和系统产电性能.FeS的投加使得系统脱色率在进水活性艳红X-3B浓度200mg/L、葡萄糖浓度100mg/L条件下达到99.83%.在进水活性艳红X-3B浓度100mg/L、葡萄糖浓度200mg/L条件下,FeS组最大功率密度达到0.849W/m3.活性艳红X-3B在系统中的脱色主要发生在底层和阳极区域,由紫外-可见全波长扫描图谱和GC-MS扫描图谱可知FeS在该区域促进了偶氮双键的断裂,并有利于脱色产物苯胺、三嗪结构、萘环结构的进一步降解.  相似文献   
946.
高级氧化技术是一种以产生羟基自由基(·OH)和硫酸根自由基(SO4?·)来降解环境有机污染物的技术. 近年来,通过活化过一硫酸盐(peroxymonosulfate, PMS)而产生SO4?·的高级氧化技术受到了广泛关注. 与基于·OH的传统高级氧化技术相比,基于SO4?·的高级氧化技术具有氧化还原电位高、半衰期长、适用pH范围广和对污染物反应快速等优点. 本文从活化PMS方法的特点和性质出发,对目前活化PMS技术降解环境有机污染物的主要方法和活化机理进行了论述,活化方法包括过渡金属活化(均相和非均相)、碳质材料活化、碱性活化、热活化、辐射活化、电解活化等,活化PMS的机制是通过活化方法使其分子结构中的O—O键发生断裂,从而使PMS分解形成SO4?·或其他的活性物质. 此外,分析了活化PMS降解环境有机污染物的主要影响因素,其中影响均相系统PMS活化的因素包括过渡金属剂量、pH和水中阴离子等,过量的PMS和过渡金属可能成为SO4?·的抑制剂,pH不仅对氧化剂分解产生自由基起着关键作用,还影响过渡金属种类的形成及其与氧化剂反应的有效性,而水中阴离子会与有机化合物竞争和SO4?·发生反应. 最后,提出未来研究重点应在开发稳定高效活化PMS的金属氧化物、碳质材料,以及使用多种处理技术协同作用上,同时应加强对活化PMS技术降解有机污染物体系的降解产物和毒性分析的研究.   相似文献   
947.
环境管理、应急处置和水质标准修订工作亟需石油类污染物淡水水质基准研究作为支撑. 本文筛选整理了大量本土物种毒性数据,利用SSD (物种敏感度分布法)和TPR (毒性百分数排序法)分析了5种典型石油类污染物(原油、苯、甲苯、乙苯和二甲苯)的淡水水生生物急性毒理数据,获得了保护我国淡水水生生物的短期水质基准值. 通过综合对比分析,认为利用SSD获得的基准值可作为石油类污染物的短期水质基准推荐阈值,原油和BTEX(苯系物,包括苯、甲苯、乙苯、二甲苯)的短期水质基准值分别为0.065、2.000、2.340、1.295和1.595 mg/L. 结果表明:①原油的毒性远大于BTEX,这可能是由于毒性的联合作用使得石油的毒性变强. ② 绿水螅对原油最敏感,原因可能是水螅更容易通过摄食或直接摄取获得原油WAF(水溶性组分)的有毒成分;鱼类相较于其他物种对苯更为敏感,而对其他BTEX而言,最敏感物种为节肢动物,原因可能是鱼类和节肢动物器官分化程度以及试验时的龄期选择存在差异,鱼类更易在短时间内将苯代谢为有毒的代谢产物. ③ 不同BTEX的敏感物种虽存在一定差异,但基准值未有数量级的差异. 研究显示,我国现行地表水环境质量标准中石油类标准未单独针对保护水生生物制定,BTEX标准的保护目标是基于人体健康而非水生生物,研究结果对我国石油类污染物环境管理、突发油类污染物对水生生物的危害及风险评估以及淡水水生生物特别是本土物种保护的水质标准制修订工作具有重要的借鉴作用.   相似文献   
948.
及时掌握污染场地修复过程中所关注污染物和修复后再利用土地类型信息对深化建设用地环境管理具有重要意义. 本文基于文献调研和信息公示平台资料查询等途径获取了我国537个污染场地案例信息数据,分析了我国近10年来污染场地修复与再利用的变化情况. 统计分析结果表明:我国537个污染场地中约有66%集中在北京市、上海市、浙江省、江苏省和重庆市等先行地区;从2016年《土壤污染防治行动计划》颁布实施开始,场地修复管控数量增势凸显,2018年污染场地修复管控数量达到峰值;原用地类型归属化学工业、金属制品、冶炼等行业的比例较大,且重金属、苯系物为主的再利用挥发性有机物、多环芳烃类为主的半挥发性有机物和总石油烃是典型污染物;在GB 36600—2018《土壤环境质量 建设用地土壤污染风险管控标准(试行)》实施前后,包含苯系物、多环芳烃类和总石油烃等污染物的出现频次增加趋势最为明显,而有机农药类和多氯联苯(总量)的出现频次有所减少;污染场地用途大部分是敏感用地类型中的居住用地,且这类场地的原行业类型为化学工业、金属制品等特征污染物危害较大的行业. 研究显示,利好政策和标准的颁布与实施促进了我国经济欠发达地区污染场地的修复管控工作,以多环芳烃类为主的半挥发性有机物是我国未来场地土壤环境治理工作的重点,需要进一步提升对再利用类型为敏感用地类型场地的关注.   相似文献   
949.
垃圾焚烧过程中会产生大量氯苯等氯代挥发性有机污染物(CVOCs)和二噁英等持久性有机污染物(POPs). CVOCs的排放会导致光化学烟雾和温室效应的产生,而二噁英能在土壤中长期附存,具有人体致癌和致畸变等严重危害. 催化降解技术具有显著优势,能将二噁英等有机污染物彻底破坏分解,最终将其转化为CO2、H2O和HCl等产物. 基于钒基催化剂VOx/TiO2的过渡金属氧化物催化剂已被广泛应用于烟气CVOCs和二噁英处理领域. 钒基氧化物VOx中的V=O基团对二噁英起到亲核吸附的作用,在钒基氧化物上添加第二活性组分钼氧化物MoOx可以提高催化剂的催化活性. 本文采用湿法浸渍的方法制备出用于催化降解含氯污染物的粉体钒钼钛VOx-MoOx/TiO2催化剂,并分析其合成方法、催化表征和性能测试结果,讨论反应温度对一氯苯及二噁英催化率影响的机理,旨在为开发二噁英催化技术提供参考. 结果表明:VOx-MoOx/TiO2催化剂表面催化活性位点较多,活性组分分散良好,起始还原温度较低,活性氧含量较多,比表面积较大,颗粒团聚较轻,具有优良的催化特性. 通过系列实验筛选出合适的催化剂组分比例为5%VOx-5%MoOx/TiO2(记作“V5-Mo5-Ti”,即VOx和MoOx的质量分数各占5%,TiO2的质量分数占90%),在150 ℃低温下其对一氯苯和二噁英的催化效果优异. V5-Mo5-Ti催化剂对一氯苯的低温转化率随原始稳定浓度和空速比的升高而降低. 在一氯苯初始浓度为150×10?6、空速比为10 000 h?1时,V5-Mo5-Ti催化剂在150 ℃下对一氯苯的转化率为54.0%,在300 ℃时接近100%. 在150 ℃的低温环境中,该催化剂对二噁英催化脱除率在86%以上,催化降解率在74%以上. 研究显示,VOx-MoOx/TiO2催化剂对二噁英的催化脱除率和降解率随温度的升高而提高,主要归因于升温加快了V2O5中V5+和V4+元素以及MoO3中Mo6+和Mo4+元素的催化氧化循环速率.   相似文献   
950.
污染物毒性数据是开展环境健康风险评估和管控的基础. 迄今为止,我国尚未建立本土化的污染物健康风险毒性数据库. 为此,本文基于收集、整编和经本土化改造的污染物健康风险毒性数据,构建了符合我国国情的污染物健康风险毒性数据库平台,为我国环境健康风险评估、风险管控及相关研究提供了基础数据和技术支撑服务. 该平台由公众端和管理端组成,公众端为公众用户提供了便捷实用的毒性数据查询与服务系统,而管理端为系统管理人员提供了高效的数据及用户组织管理工具. 该平台集成了国内外业界广泛使用的相关信息系统优点,创新性地构建了实时交互响应、自动生成审核信息的数据审核功能,同时拟利用生态环境云服务实现统一管理、统一监控、统一运维、统一服务和统一备份,将极大地保证系统的稳定性和安全性.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号