首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   51篇
  国内免费   18篇
安全科学   81篇
废物处理   1篇
环保管理   17篇
综合类   101篇
基础理论   13篇
污染及防治   7篇
评价与监测   1篇
社会与环境   24篇
灾害及防治   100篇
  2024年   1篇
  2023年   13篇
  2022年   24篇
  2021年   11篇
  2020年   13篇
  2019年   19篇
  2018年   9篇
  2017年   5篇
  2016年   13篇
  2015年   8篇
  2014年   11篇
  2013年   11篇
  2012年   18篇
  2011年   16篇
  2010年   25篇
  2009年   18篇
  2008年   16篇
  2007年   18篇
  2006年   15篇
  2005年   14篇
  2004年   10篇
  2003年   12篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有345条查询结果,搜索用时 218 毫秒
311.
目的 针对船用唇形密封使用过程中的唇口破坏问题,研究唇形密封失效影响因素及唇形密封应力、位移、接触压力分布特性。方法 模拟实船齿轮箱输入结构搭建试验台,进行密封失效因素分析,并利用有限元分析软件建立旋转唇形密封的二维轴对称模型,分析过盈量及橡胶本体材料参数对唇形密封应力、位移、唇尖接触压力分布的影响。结果 除密封材料及密封接触应力因素不确定外,其他所列因素几乎均未发生泄漏,因此进一步对不同材料及接触特性进行有限元分析。研究表明,3种材料中,2号材料的Von Mises应力值最大,且不管何种材料,随着过盈量增加,唇尖应力沿着参考线先增大后、逐渐减小、再增大,并呈现非对称分布,过盈量超过0.4 mm时,唇形密封的最大应力出现在骨架与橡胶本体接触圆角处。随着过盈量的增加,3种材料唇尖最大接触压力的变化趋势不同,最大Von Mises 接触应力逐渐增大,且过盈量在0.6 mm之后增速较快,唇尖接触线位置接触压力先减小、后逐渐增大,拐点在接触线位置0.25~0.3 mm处。结论 油温、油压、安装方式、偏心量、转速对于唇形密封失效的影响较小。材料属性与过盈量都会引起唇形密封Von Mises应力及唇尖接触压力发生较大变化,只是影响应力峰值大小不同,材料属性对于唇形密封本体位移的影响较小,过盈量会引起位移较大变化,且会引起最大应力位置变化,同时接触线接触应力与接触压力大小没有相关性。对于唇形密封安装来说,在过盈量为0.8 mm左右时较为合理。  相似文献   
312.
方双喜  周凌晞  汪巍  张芳  姚波  许林  刘立新  温民 《环境化学》2011,30(5):1030-1033
提出采用单一标气非线性校正的方式对未知气体的N2O进行定量.以浓度为278.11×10-9(物质的量之比)的单一标气多次分析3瓶接近于环境浓度的N2O样气,结果与多点二次多项式拟合均值差异小于0.1×10-9,精度优于(0.03±0.09)%,表明该方法在用于本底大气中N2O浓度在线观测时,能有效校正采用单点线性拟合可...  相似文献   
313.
为研究液体黏滞阻尼器参数变化对大跨径悬索桥地震响应的控制效果,以某悬索桥为例,基于ANSYS有限元软件建立梁端设置液体黏滞阻尼器的结构有限元分析模型,采用非线性动力时程方法,对液体黏滞阻尼器的阻尼系数和阻尼指数进行参数敏感性分析,并与未设置液体黏滞阻尼器的结构地震响应进行对比,在此基础上研究液体黏滞阻尼器参数变化对结构地震响应的影响。结果表明:对于大跨度悬索桥,液体黏滞阻尼器的设置应以控制地震作用下梁端位移响应为首要目标,阻尼指数对减震效果影响最为显著,其值宜选取在0.8~1.0范围,并根据设计阻尼力来选择适当的阻尼系数值。设置恰当参数的液体黏滞阻尼器,可有效降低悬索桥梁端位移,且不会显著增加结构地震内力响应。  相似文献   
314.
室内火灾发展过程稳定性数值计算与分析   总被引:1,自引:1,他引:0  
为明确轰燃现象出现前火灾所处的状态,得到轰燃发生的临界条件,基于非线性动力系统稳定性理论,针对描述火灾过程的一个典型微分方程,采用数值方法计算了系统Jacobi矩阵的特征值随时间的变化。计算结果表明在出现轰燃现象之前的火灾过程始终处于临界稳定状态。通过火灾过程的温度T(n+1)~T(n)曲线的数值计算验证了轰然发生的临界条件,对火灾非线性动力系统的时间演化过程进行了解释。  相似文献   
315.
大跨度悬索桥几何非线性主要来自3个方面:缆索垂度效应、梁柱效应、大位移引起的几何形状变化。鉴于地震波高频成分振幅大,低频成分振幅小的特点,很难对地震作用下大跨度悬索桥几何非线性的影响做出定性判断。目前大跨度桥梁的几何非线性研究主要集中在斜拉桥,且不同的学者得出了不同的结论。本文以逐级加大振幅的Ⅳ类场地多条地震波为激励,通过对称与非对称的2座典型大跨度悬索桥的几何非线性影响对比分析,探讨了几何非线性对大跨度悬索桥重要地震响应量的影响程度及其原因,并提出了相应的抗震设计参考建议。  相似文献   
316.
硝酸根在电化学还原去除过程中存在多价态变化行为,该过程是一个典型的远离平衡态的非线性体系.为探明硝酸根在去除过程中发生的电化学行为,研究了H2SO4浓度、电流、反应温度及NO3-浓度对阴极电位振荡的影响规律.采用循环伏安法、XRD、SEM-EDS及XPS表征方法,分析了反应体系循环伏安特性,以及反应前后阴极Cu表面的物相组成、微观形貌、表面电子价态等变化规律.研究结果表明,在恒流条件下(Pt作为阳极、Cu作为阴极),H2SO4-NaNO3体系发生了明显的电位振荡;当H2SO4浓度为0.10mol/L,电流为12mA,温度为20℃,NaNO3浓度为0.20mol/L最佳电位振荡条件下,振荡平均振幅为1.15V,振荡平均周期为3s.另外,硝酸根在电化学还原去除过程产生的周期性电位振荡主要原因是阴极Cu表面生成的致密CuO薄膜不断溶解和形成,以及阴极表面H2的周期性产生与消失.  相似文献   
317.
目的研究金属橡胶隔振系统的非线性振动特性和机理。方法建立该金属橡胶隔振系统的非线性动力学模型,利用平均法推导出系统的自由振动运动方程和在简谐激励下的受迫振动幅频响应方程,通过数值计算分析影响隔振系统位移传递率的因素。随后设计一种结构紧凑的金属橡胶隔振器,通过静压试验得到加载卸载迟滞回线,利用拟合方法建立金属橡胶的指数型刚度模型。该模型在相同拟合效果下参数较少,将指数型非线性刚度模型代入到振动方程中进行求解,得到理论幅频响应曲线。同时,进行金属橡胶隔振系统的正弦扫频试验,得到不同振动幅值下的实测传递率幅频响应,与理论计算结果进行对比。结果拟合参数与系统的振动特性相关,拟合参数k_(1)越大,系统共振频率越低,拟合参数k_(2)越大,系统共振频率越高。理论计算与试验结果共振频率的误差最大为2.1%,放大倍数最大误差为17.1%。该理论方法可以较为准确地计算出隔振系统的共振频率、共振放大倍数以及非线性振动的跳跃现象。结论该方法可以较为准确地通过金属橡胶隔振器的静压试验数据预估出金属橡胶隔振系统的非线性振动特性,对于金属橡胶隔振设计具有一定的应用价值。  相似文献   
318.
李庆召  罗旭 《地球与环境》2014,42(3):306-310
选择卫河流域河南段(鹤壁段)为研究站位,在水环境中直接采集生物膜和沉积物样品,进行了Hg2+吸附实验。研究结果表明水体生物膜、沉积物/生物膜复合对Hg2+的吸附动力过程符合Lagergren准二级动力学方程(R20.98),Freundlich和Langmuir等温曲线均可描述Hg2+在表层沉积物和生物膜样品上的热力学吸附过程,显著性水平达到P=0.005(n=7),pH对Hg2+在沉积物、水体生物膜、及二者复合体系的吸附均产生显著的影响,最佳吸附pH介于5~7之间,通过Langmuir等温曲线计算了三类材料对Hg2+的最大吸附容量:水体生物膜沉积物/水体生物膜沉积物。三种吸附材料上Hg2+的NaNO3解吸率从大到小依次为:沉积物沉积物/生物膜生物膜。  相似文献   
319.
基于分段线性差分法,建立了一种饱和?非饱和土一维非线性大变形固结模型 UCS2。该模型可考虑土体初始饱和度随深度变化,可分析不同地下水位深度的土体大变形固结问题,并编制了 Fortran 计算程序。采用现有数值解对该模型进行了验证,UCS2 模型分别在饱和与非饱和情况下与现有数值解吻合。开展了大变形算例分析,对比了固结前后孔隙比、饱和度、孔隙水压的变化规律,探讨了地下水位深度及非饱和参数对土体固结沉降的影响。  相似文献   
320.
本文以大连马场220kV变电站为例,对二号主变高低压侧电压畸变率、闪变电压和谐波电流进行了测试,以测试结果为依据对2号主变噪声异常现象进行了分析,从而确定了主变产生异常噪声的原因,从制造工艺和结构设计方面提出了抑制噪声的几点措施,不仅给变电站的运行成本带来经济效益,而且消除了设备上的安全隐患,为电网的安全运行提供了坚实的硬件保障。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号