首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   15篇
  国内免费   259篇
安全科学   4篇
废物处理   3篇
环保管理   2篇
综合类   283篇
基础理论   5篇
污染及防治   51篇
  2024年   1篇
  2023年   1篇
  2022年   12篇
  2021年   13篇
  2020年   21篇
  2019年   32篇
  2018年   31篇
  2017年   30篇
  2016年   18篇
  2015年   19篇
  2014年   25篇
  2013年   21篇
  2012年   18篇
  2011年   10篇
  2010年   16篇
  2009年   27篇
  2008年   9篇
  2007年   18篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2000年   1篇
排序方式: 共有348条查询结果,搜索用时 31 毫秒
231.
许静怡  杜俊  杨一烽  吕锋  夏四清 《环境科学》2018,39(8):3767-3774
分别采用SBR反应器和MBR反应器驯化培养亚硝化污泥和厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)污泥,并通过微生物包埋技术将两类污泥分别包埋,构建亚硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN/A)双菌层系统.短期实验证明该系统中亚硝化菌(ammonia oxidizing bacteria,AOB)和ANAMMOX菌在不同阶段分别起主导作用,维持系统的酸碱平衡,并实现NH+4-N的高效去除(98.8%).长期实验表明,在溶解氧受限时,PN/A双菌层系统能够有效提高系统对溶解氧的利用效率,并增强系统的稳定性和脱氮效能.在溶解氧为1.0 mg·L~(-1),进水NH+4-N质量浓度分别为200 mg·L~(-1)和400 mg·L~(-1)时,对照组脱氮效率仅为58.1%和61.4%,而PN/A双菌层系统脱氮效率均稳定在80%左右;溶解氧为3.0mg·L~(-1),进水NH+4-N质量浓度为400 mg·L~(-1)时,PN/A双菌层系统总氮去除率达87.9%,总氮积累负荷(NLR)为0.4kg·(m3·d)-1,总氮去除负荷(NRR)为12.8 mg·(g·h)-1.  相似文献   
232.
HRT对厌氧氨氧化协同异养反硝化脱氮的影响   总被引:2,自引:2,他引:0  
采用SBR处理实际生活污水,在实现半亚硝化时,出水NH_4~+-N、NO-2-N及COD平均浓度分别为37.27、39.97和120mg·L~(-1),将其作为厌氧氨氧化反应器(ASBR)的进水.控制温度为24℃,pH为7.2±0.2,考察HRT分别为36、33、30和27h时对厌氧氨氧化协同异养反硝化脱氮的影响.结果表明:(1)HRT为33 h时系统脱氮效能最佳,总氮容积负荷(TNLR)和总氮去除负荷(TNRR)平均值分别为0.056 kg·(m3·d)~(-1)和0.050 kg·(m3·d)~(-1);NH_4~+-N、NO-2-N和COD平均出水浓度分别为1.36、0.47和49.79 mg·L~(-1),三者去除率分别为96.30%、98.83%和56.17%;ΔNO-2-N/ΔNH_4~+-N和ΔNO_3~--N/ΔNH_4~+-N分别为1.17和0.15,比厌氧氨氧化反应的理论值(1.32,0.26)小0.15和0.11,造成此偏差的原因是由于系统中存在异养反硝化.(2)随着HRT的逐渐减小,厌氧氨氧化对脱氮的贡献率逐渐减小,异养反硝化对脱氮的贡献率逐渐增加.本研究结果可为厌氧氨氧化技术在实际工程中的应用提供参考.  相似文献   
233.
针对厌氧氨氧化与反硝化协同实现脱氮除碳优化问题,采用UASB反应器处理不同进水条件下的氨氮废水,基于BP神经网络分别建立NH_4~+-N去除模型和COD去除模型,同时为了提高模型的鲁棒性和运算速度,使用PCA算法降低输入变量维数.仿真结果表明,基于PCA-BP的预测模型具有较好的预测能力,检验样本中模型预测值与实际真实值的相关系数分别为0.9164和0.9987,且两模型的平均预测误差都保持在在10%以内.进一步结合NSGA-II算法建立以去除NH+4-N和COD最大化的优化模型,以优化结果为条件建立的出水效果接近实际真实值,表明该模型给出的优化解决方案有效可行,可为实现厌氧氨氧化与反硝化协同脱氮除碳工艺的设计和操作提供参考和指导.  相似文献   
234.
研究了ASBR反应器中厌氧氨氧化细菌的富集以及无机碳源对ASBR反应器中厌氧氨氧化的影响。实验分别在8.0 L和4.0 L的ASBR反应器中进行。结果表明,接种污泥在驯化55 d后,第一次出现厌氧氨氧化细菌活性迹象;在85 d时候,厌氧氨氧化细菌成为优势菌种;在140 d时候,反应器运行稳定,出水浓度非常低,污泥颜色由灰色变成浅红色。随着NaHCO3溶液质量浓度从1.0 g/L增加到1.4 g/L,厌氧氨氧化细菌的活性迅速增加,当NaHCO3溶液质量浓度达到2.0 g/L时厌氧氨氧化细菌的活性受到抑制。然而,随着NaHCO3溶液质量浓度下降到1.0 g/L,厌氧氨氧化细菌活性可以恢复。  相似文献   
235.
厌氧氨氧化过程中COD及pH与基质浓度之间的关系   总被引:8,自引:3,他引:5  
田智勇  李冬  张杰 《环境科学》2009,30(11):3342-3346
分析了上向流厌氧氨氧化生物滤池中氮素化合物浓度、COD和pH变化规律以及ANAMMOX活性和生物量的分布规律,利用数理统计的方法研究了厌氧氨氧化过程中COD和pH与氮素基质浓度之间的关系.结果表明,溶解氧和氮负荷的共同作用使得ANAMMOX活性和生物量的分布沿滤层深度呈"山脊"状不均匀分布;异养反硝化的存在和H+的消耗使得厌氧氨氧化过程中COD和pH分别呈降低和升高趋势;100 mg/L以下的有机物浓度对厌氧氨氧化菌的影响不大,且COD和pH与基质NH4+-N浓度之间呈良好的线性相关关系.本试验中COD-NH4+-N和pH-NH4+-N拟合直线的斜率分别为1.113 8±0.052 2和-0.111 3±0.001 2,置信度为95%,平均相关系数R2分别为0.982 3和0.985 0.  相似文献   
236.
包涵  张卫东  宫正  薛源 《环境科学》2009,30(5):1461-1467
基于16S rDNA基因的分子生物学方法,对运行单级自养脱氮工艺的膜曝气生物膜反应器(membrane-aerated biofilm bioreactor, MABR)内的2个主要效应菌群(氨氧化菌和厌氧氨氧化菌)之间的协同作用关系和在生物膜上可能的空间分布进行研究.荧光原位杂交结果显示,试验的曝气生物膜主要存在2个明显的功能层,一个是靠近曝气膜和生物膜交界的氨氧化菌聚集层,另一个是靠近生物膜与水体交界的厌氧氨氧化菌聚集层.氨氧化菌和厌氧氨氧化菌群为曝气生物膜上的2个主要功能菌群,它们之间的合作共生和协同作用是膜曝气生物膜实现单级自养脱氮的基础.  相似文献   
237.
常温城市污水同步亚硝化-厌氧氨氧化研究   总被引:3,自引:0,他引:3  
在常温14.7~24.7℃条件下,以城市生活污水为研究对象,采用SBR反应器,通过调整曝气量控制DO浓度为0.05~0.30 mg/L,进行了同步亚硝化-厌氧氨氧化试验.结果表明,SBR活性污泥反应器可以在常温条件下实现城市污水氨氮的同步亚硝化-厌氧氨氧化反应;DO可以作为其反应终点的指示参数,本试验确定为1 mg/L;在SBR探索试验中,NH+4-N消耗速率为0.164~0.218 kg/(m3·d),NO-3-N产生速率为0.026~0.036 kg/(m3·d),TN脱除速率为0.124~0.194 kg/(m3·d),去除效率为65%~75%;在SBR改进试验中,分别通过提高温度、增设非曝气运行时段和增加厌氧氨氧化菌生物量3个途径,避免了亚硝酸盐的积累,TN去除效率提高至77%~88%.考虑到脱氮速率和实际的工程应用条件,认为增加厌氧氨氧化菌的生物量是提高SBR反应器脱氮效能的优选途径.  相似文献   
238.
城市污水连续流半亚硝化实现维持机理与工艺创新研究   总被引:3,自引:0,他引:3  
常温(20~29℃)限氧条件下(DO0.2mg·mL-1),以城市污水A/O除磷工艺处理出水为原水,在推流式好氧反应器中,考察了城市污水连续流半亚硝化实现维持的内在机制与影响因素,开发了一套新型半亚硝化工艺运行模式.试验结果表明,接种污泥性质、反应器污泥浓度(MLSS)和单级反应器好氧/缺氧交替内循环的运行方式是城市污水实现维持半亚硝化的关键影响因素.随着回流比的加大,亚硝氮累积率持续稳定上升,试验获得亚硝氮累积率平均为85%,最高达到96%.长期在低DO条件下运行,污泥沉降性能良好,SVI值在70~110mL.g-1.半亚硝化工艺出水NO2--N/NH4+-N平均为1.0,可为城市污水的厌氧氨氧化(ANAMMOX)提供合适的进水基质.试验后期,总氮(TN)去除率达到50%,批量实验证实去除途经为厌氧氨氧化,这一试验结果为开发低氨氮城市污水同步半亚硝化-厌氧氨氧化工艺提供了研究基础.  相似文献   
239.
毕贞  董石语  黄勇 《环境科学》2021,42(3):1477-1487
厌氧条件下,ANAMMOX培养物中发生的硫酸盐型氨氧化(SRAO)现象被认为是由ANAMMOX细菌(AnAOB)介导的自养生物转化过程.在这个过程中,作为电子供体的氨被电子受体硫酸盐氧化.在某一些自然环境中观察到的氨与硫酸盐转化现象也被认为是由于上述生物转化作用而导致的.然而,在不同研究中,关于氨与硫酸盐的转化摩尔比(N/S)、硫酸盐还原的中间产物和最终产物的认定均有存在较大差异.因此,氨和硫酸盐在ANAMMOX培养物中的转化机制仍不明确.为探明ANAMMOX污泥中SRAO现象背后的基质转化途径,在不同厌氧状态(微氧:-100 mV < ORP < 0 mV,0.5 mg·L-1 < DO < 1 mg·L-1;缺氧:-300 mV < ORP < -100 mV,0.2 mg·L-1 < DO < 0.5 mg·L-1;厌氧:ORP < -300 mV,DO < 0.2 mg·L-1)以及不同污泥组成(ANAMMOX污泥和混合污泥)的条件下开展连续流实验和批次实验.结果表明,SRAO现象只能在缺氧条件且存在异养硫酸盐还原细菌(SRB)的混合污泥中发生;在ANAMMOX污泥中无论处于哪种厌氧状态,均不会发生SRAO现象.微生物群落变化与功能基因表达分析表明,ANAMMOX污泥和混合污泥中均存在以NitrosomonasNitrosospira为主的携带amoA基因的氨氧化细菌(AOB),可将氨氧化生成亚硝酸盐,为AnAOB代谢提供底物.DesulfomicrobiumDesulfovibrio以及Desulfonatronum等携带apsA基因的SRB只存在于混合污泥中,它们利用微生物衰亡释放的有机物将硫酸盐还原.AnAOB并不能以硫酸盐为电子受体氧化氨维持代谢.因此,在ANAMMOX污泥中观察到的SRAO现象(即氨与硫酸盐的同步转化)实际上是氨氧化、ANAMMOX和异养硫酸盐还原这3个过程联合的结果,上述生物转化过程分别由AOB、AnAOB和SRB完成.  相似文献   
240.
厌氧氨氧化颗粒污泥的长期保藏及快速活性恢复   总被引:2,自引:0,他引:2  
李冬  刘名扬  张杰  曾辉平 《环境科学》2021,42(6):2957-2965
在4℃且无基质的条件下,将厌氧氨氧化颗粒污泥保藏230 d之后进行活性恢复,探究添加葡萄糖和丙酸钠两种有机碳源对于快速活性恢复的影响.经过230 d的长期保藏,厌氧氨氧化菌活性为0.013 g·(g·d)-1,仅为保藏前的6.02%,且平均粒径为135.05 μm,骤降至原来的38.23%,污泥解体、颜色发黑.在活性恢复阶段,R2和R3反应器分别添加葡萄糖和丙酸钠作为有机碳源,恢复结果显示,经过15 d的恢复,R1、R2和R3反应器的PN含量分别达到了126.30、188.86和168.82 mg·g-1,厌氧氨氧化菌活性均有所提升,分别达到了0.145、0.185和0.126 g·(g·d)-1,其中,添加葡萄糖作为有机碳源的R2反应器厌氧氨氧化菌活性最高,恢复到了保藏前的85.65%,且总氮去除率达到81.61%.第20d时,R1、R2和R3反应器中厌氧氨氧化颗粒污泥的粒径分别为289.81、359.66和314.37 μm,表明厌氧氨氧化颗粒污泥的长期保藏不是无法克服的难题,且在恢复阶段添加葡萄糖不仅可以有效提高EPS含量,促进颗粒生长和黏附,而且丰富了厌氧氨氧化的反应途径,使其在恢复阶段与其他细菌的底物竞争中占据优势,更快地恢复活性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号