首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   44篇
  国内免费   379篇
安全科学   10篇
废物处理   13篇
环保管理   2篇
综合类   497篇
基础理论   45篇
污染及防治   16篇
评价与监测   1篇
  2024年   11篇
  2023年   45篇
  2022年   63篇
  2021年   82篇
  2020年   76篇
  2019年   54篇
  2018年   39篇
  2017年   61篇
  2016年   46篇
  2015年   35篇
  2014年   24篇
  2013年   17篇
  2012年   18篇
  2011年   9篇
  2010年   3篇
  2006年   1篇
排序方式: 共有584条查询结果,搜索用时 515 毫秒
101.
作为药品和个人护理产品(PPCPs)中用量最大的一类,对乙酰氨基酚广泛存在于水环境中,具有潜在的环境风险;因此,有必要对其去除机制开展研究.基于我国农业秸秆资源高值转化的需求,通过热解制备秸秆生物炭吸附净化水中对乙酰氨基酚具有良好的应用前景.然而秸秆生物炭对对乙酰氨基酚的吸附过程和机制尚不清楚.选用4种秸秆(稻秆、麦秆、玉米秆和大豆秆)作为原料,通过热裂解在400℃和500℃制备生物炭,进行序批吸附实验,同时研究腐殖酸和pH对吸附过程的影响.结果表明,基于Freundlich模型和位置能量分布模型可知,500℃生物炭对对乙酰氨基酚的吸附量显著高于400℃生物炭(吸附系数KF高出1.16~2.53倍),且具有较多的高能吸附位点.高温热解生物炭的主要吸附机制为孔道吸附和π-π作用;低温热解生物炭的主要吸附机制为表面氢键作用.腐殖酸对对乙酰氨基酚在生物炭上的去除具有协同效应,这归因于所选腐殖酸具有一定芳香性,可促进与对乙酰氨基酚的相互作用.pH升高抑制生物炭吸附主要归因于对乙酰氨基酚团聚.吸附机制研究表明,可通过提高热解温度促进对乙酰氨基酚在秸秆生物炭上的孔道吸附和π-π作用;腐殖酸和pH影响研究表明,秸秆生物炭与对乙酰氨基酚的相互作用不受腐殖酸影响,在低pH环境下也具有良好吸附性能.  相似文献   
102.
改性生物炭负载纳米零价铁去除水体中头孢噻肟   总被引:2,自引:2,他引:2  
抗生素对环境的危害已经引起了人们的广泛重视.本实验以改性生物炭(MB)为载体制备了负载纳米零价铁的功能生物炭(Fe/MB).以头孢噻肟(CFX)为目标抗生素,研究了该材料对头孢噻肟的降解特性及影响因素,并探讨了去除机理.实验结果表明,50 min内头孢噻肟的去除率为92%(Fe/MB用量为0.4 g·L~(-1),溶液p H=5.0,头孢噻肟浓度为20 mg·L~(-1),振荡速率为200 r·min~(-1),柠檬酸浓度为1.47 mmol·L~(-1)).头孢噻肟的去除过程存在改性生物炭的吸附和纳米零价铁还原降解的协同作用,数据符合伪二级反应动力学方程(R20.99).采用紫外可见光谱结合质谱分析了降解产物的结构并提出头孢噻肟的降解途径.  相似文献   
103.
生物炭添加和灌溉对温室番茄地土壤反硝化损失的影响   总被引:1,自引:4,他引:1  
生物炭添加和灌溉是番茄地常用的田间管理措施,然而其对反硝化的影响还不清楚.本研究种植试验设置3个灌溉量水平分别为估算作物生育期需水量ET0的50%(W50%)、75%(W75%)、100%(W100%)和3个生物炭添加水平分别为B0(折合纯碳,0)、B25(折合纯碳,25 t·hm-2)、B50(折合纯碳,50 t·hm-2),在2014年和2015年番茄收获后,每个试验小区采集具有代表性的土样进行室内培养试验,采用乙炔抑制法来研究土壤的反硝化损失和不加乙炔研究N_2O的排放量.结果表明生物炭和灌溉量显著改变了土壤的理化性质.与B0相比,添加生物炭能够提高土壤全碳、全氮含量和pH值,降低铵态氮、硝态氮含量,而灌水量降低了土壤中全氮和全碳的含量.因此,与B0/W50%相比,B25/W75%和B50/W100%处理显著减少了反硝化损失量(P0.05).生物炭和灌溉量的交互作用对土壤无机氮含量和反硝化损失的影响均达到显著水平(P0.05),且对硝态氮的影响表现为灌溉量生物炭添加量两者交互作用,对铵态氮的影响表现为生物炭添加量灌溉量两者交互作用,对反硝化损失的影响表现为灌溉量生物炭添加量两者交互作用.反硝化损失量与土壤中无机氮含量、(CO_2-C)矿化量与N_2O排放量均呈正相关关系.不同生物炭添加量和灌溉量处理后明显影响了N_2O/DN(P0.05),培养结束时,各处理下的N_2O累积排放量/DN累积排放量差异较大,介于0.31%~1.88%.  相似文献   
104.
玉米秸秆生物炭对稻田土壤砷、镉形态的影响   总被引:17,自引:0,他引:17  
通过室内土壤培养的方法模拟稻田土壤环境,研究淹水环境下添加(1%添加量)不同温度制备的玉米秸秆生物炭(CB-300、CB-400、CB-500)对砷、镉复合污染稻田土壤氧化还原电位(Eh)、pH值及不同形态砷、镉含量动态变化的影响.结果表明,热解温度会影响玉米秸秆生物炭的理化性质,热解温度由300℃升至500℃,玉米秸秆生物炭芳香性增加,亲水性和极性降低,灰分含量增加,pH值升高.淹水环境下添加玉米秸秆生物炭处理相比对照(CK)可提高土壤pH值0.20~1.24,升高幅度大小为CB-500CB-400CB-300CK,随着培养时间的延长,pH值趋于平衡状态;淹水环境下土壤氧化还原电位均迅速下降,且不同处理组间存在显著差异,生物炭制备温度越高下降效果越明显,培养至第96 d时氧化还原电位降到最低.CK、CB-300、CB-400、CB-500处理组弱酸可提取态镉含量由淹水前的73.55%分别降至63.46%、57.73%、54.50%、53.94%,随着培养时间的延长,土壤中弱酸可提取态及可氧化态镉逐渐向残渣态及可还原态镉转化.土壤pH值与弱酸可提取态镉含量之间呈显著负相关关系.淹水环境下土壤可交换态砷含量升高,玉米秸秆生物炭的施加导致土壤交换态、Ca-结合态、Al-结合态和Fe-结合态砷含量逐渐上升,上升幅度分别为75.68%、20.92%、13.49%、48.66%,残渣态砷含量下降;土壤pH值与交换态砷含量之间呈显著正相关关系.研究结果可为砷、镉复合污染稻田安全生产与阻控提供数据支持.  相似文献   
105.
The removal efficiency of copper(Cu(Ⅱ)) from an actual acidic electroplating effluent by biochars generated from canola,rice,soybean and peanut straws was investigated.The biochars simultaneously removed Cu(Ⅱ) from the effluent,mainly through the mechanisms of adsorption and precipitation,and neutralized its acidity.The removal efficiency of Cu(Ⅱ) by the biochars followed the order:peanut straw char > soybean straw char > canola straw char > rice straw char a commercial activated carbonaceous material,which is consistent with the alkalinity of the biochars.The pH of the effluent was a key factor determining the removal efficiency of Cu(Ⅱ) by biochars.Raising the initial pH of the effluent enhanced the removal of Cu(Ⅱ) from it.The optimum pyrolysis temperature was 400°C for producing biochar from crop straws for acidic wastewater treatment,and the optimum reaction time was 8 hr.  相似文献   
106.
两种木材生物炭对铜离子的吸附特性及其机制   总被引:17,自引:4,他引:17  
为探索高效利用废弃生物质资源制备生物炭去除水体和土壤中Cu~(2+)污染的可行性,本文以常见的农林废弃物苹果树枝和梧桐木锯末为原料,采用450℃限氧热裂解法制备生物炭,通过两种生物炭对Cu~(2+)的批量吸附试验,利用4种等温吸附模型(Langmuir、Freundlich模型、Temkim、D-R模型)和4种吸附动力学模型(准一级动力学、准二级动力学、Elovich模型、颗粒内扩散模型)研究了苹果枝和锯末生物炭对Cu~(2+)的吸附行为.同时,使用FTIR红外、SEM和BET比表面积及孔径分析等技术表征了生物炭的理化性质,研究了两种生物炭对Cu~(2+)吸附机制,分析了两种生物炭之间的吸附特性差异及其影响因素.结果表明:(1)苹果枝生物炭在3 h达到吸附平衡,理论最大吸附量为15.85 mg·g~(-1),锯末生物炭在6h达到吸附平衡,理论最大吸附量为17.44 mg·g~(-1),与其他研究相比,这两种生物炭体现了较高的Cu~(2+)吸附性能;(2)两种生物炭对Cu~(2+)的热力学吸附均较好地符合Langmuir模型,表明吸附过程主要是近似单分子层的有益吸附;动力学吸附均符合准二级吸附动力学模型,表明其对Cu~(2+)的吸附包括表面吸附、颗粒内扩散和液膜扩散等多种过程;(3)吸附机制主要包括静电吸附,配体(酚羟基)/离子(H+)交换和阳离子—π键作用.  相似文献   
107.
互花米草作为入侵物种,在我国沿海分布广泛,对沿海生态造成负面影响.本研究以互花米草资源化利用为出发点,在300℃和600℃下将其热解分别制得BC300和BC600两种生物炭,采用批量平衡法研究了生物炭添加对土壤吸附三氯生(TCS)的影响及其机制.结果表明,BC300内含有未炭化有机质,对TCS的吸附以分配作用为主,有利于对高浓度TCS的吸附;BC600有较大的比表面积,对TCS的吸附以表面吸附为主,有利于对低浓度TCS的吸附.生物炭添加能够促进土壤对TCS的吸附,且吸附量随生物炭添加比例的增加而增加;添加BC300的土壤对TCS的吸附量要显著高于添加BC600的土壤,这主要与生物炭的结构特征及其对土壤p H值的影响有关.因此,添加300℃下制备的互花米草生物炭可以有效地降低土壤中TCS的环境风险,同时也能为护花米草的资源化利用提供一条可行途径.  相似文献   
108.
以稻草秸秆为原料,分别通过水热炭化和热解炭化制备生物质炭(分别记为RS-HC和RS-BC),并采用不同的洗涤剂(蒸馏水、乙醇、四氢呋喃)对水热炭进行洗涤,分别记为RS-HC1、RS-HC2和RS-HC3.探究了吸附时间、Cd2+初始浓度和溶液pH值对4种生物质炭吸附性能的影响.结果表明:4种生物质炭对Cd2+的吸附均符合准二级动力学方程,表明吸附过程主要受化学吸附速率控制;RS-HC对不同浓度下Cd2+的吸附符合Langmuir等温吸附模型,但对于RS-BC,Langmuir方程和Freundlich方程的拟合效果都比较好(R2>0.93),说明水热炭对Cd2+的吸附多为单分子层吸附,而Cd2+在热解炭上的吸附则是多分子层吸附和单分子层吸附共同作用的结果;4种生物质炭的平衡吸附容量排序为:RS-BC>RS-HC3>RS-HC2&g...  相似文献   
109.
生物炭吸附硫化氢机制与影响因素研究进展   总被引:1,自引:0,他引:1  
徐期勇  梁铭珅  许文君  黄丹丹 《环境科学》2021,42(11):5086-5099
硫化氢(H2S)是现代社会工业生产过程中最常见的气体污染物之一,具有高毒性、腐蚀性和污染性,若处理不当会对自然环境与人类健康造成危害.生物炭因具备良好的吸附特性以及低成本和制备来源广等优点,在环境污染治理领域有着广泛的应用前景.目前生物炭吸附硫化氢技术在国内外受到越来越多的关注,但影响生物炭吸附硫化氢的因素复杂多样,需要对相关知识和研究进展进行系统地总结和归纳.从生物炭特性、吸附影响因素(生物质原料、热解温度、热解停留时间、粒径)、调控手段(包括湿度、吸附温度、吸附操作条件、改性活化)以及吸附硫化氢机制,对国内外生物炭吸附硫化氢的研究进展进行综述,通过选择合适的生物炭原材料、制备条件和优化生物炭吸附条件,从而为实现生物炭对硫化氢的高效去除提供更多的参考信息.  相似文献   
110.
镁改性芦苇生物炭控磷效果及其对水体修复   总被引:5,自引:4,他引:1  
将收割的芦苇制成生物炭,投加到底泥中以控制内源磷释放,是一种将芦苇资源化利用的新途径.将芦苇通过氯化镁浸渍改性,分别在300、 450和600℃条件下高温裂解,制得3种镁改性芦苇生物炭,通过等温吸附实验分析3种炭对磷酸盐的吸附特征,选择了对磷酸盐吸附效果较好的生物炭MBC-450作为研究材料.以某校园河道底泥和上覆水为研究对象,探讨镁改性芦苇生物炭在不同投加方式(混合和覆盖)下对上覆水磷酸盐的吸附作用及内源磷释放的控制效果.结果表明,混合和覆盖投加可有效降低上覆水DIP浓度,与对照组相比磷累积吸附量分别提高了17.3%和11.7%;混合投加对间隙水磷的控制效果更明显,与对照组相比,间隙水DIP从0~2 cm至4~6 cm分别降低了14.7%、 18.9%和35.36%,而覆盖投加对应分别降低了33.3%、-28.2%和12.9%.与对照组相比,生物炭混合和覆盖分别导致0~2 cm和2~4 cm底泥中NH4Cl-P占TP的比例分别升高了15%、 15%(混合)和12%、 2%(覆盖),而BD-P占TP的比例分别降低了7%、 9%(混合)和6%、 3%(覆盖),Al-...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号