全文获取类型
收费全文 | 497篇 |
免费 | 64篇 |
国内免费 | 326篇 |
专业分类
安全科学 | 46篇 |
废物处理 | 77篇 |
环保管理 | 61篇 |
综合类 | 454篇 |
基础理论 | 61篇 |
污染及防治 | 162篇 |
评价与监测 | 25篇 |
社会与环境 | 1篇 |
出版年
2024年 | 1篇 |
2023年 | 13篇 |
2022年 | 13篇 |
2021年 | 34篇 |
2020年 | 38篇 |
2019年 | 31篇 |
2018年 | 42篇 |
2017年 | 27篇 |
2016年 | 40篇 |
2015年 | 42篇 |
2014年 | 34篇 |
2013年 | 58篇 |
2012年 | 55篇 |
2011年 | 43篇 |
2010年 | 28篇 |
2009年 | 38篇 |
2008年 | 23篇 |
2007年 | 37篇 |
2006年 | 25篇 |
2005年 | 33篇 |
2004年 | 28篇 |
2003年 | 27篇 |
2002年 | 25篇 |
2001年 | 19篇 |
2000年 | 30篇 |
1999年 | 25篇 |
1998年 | 16篇 |
1997年 | 12篇 |
1996年 | 8篇 |
1995年 | 6篇 |
1994年 | 3篇 |
1993年 | 10篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1978年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有887条查询结果,搜索用时 15 毫秒
751.
采用半连续实验方法,研究了中温厌氧条件下硫酸盐的还原行为及产生抑制作用的机理.实验结果表明,SO_4~(2-)在厌氧体系中被硫酸盐还原菌(SRB)全部或部分还原为硫化物,其还原率与SO_4~(2-)累积加入浓度有关.还原产物的形态与体系中pH值有关,较高的pH值(7.6—8.4)使体系中H_3S含量下降.SO_4~(2-)对厌氧体系的抑制与SO_4~(2-)还原过程中SRB与产甲烷菌(MRB)的底物竞争及还原产物的毒性相关.前者受COD/SO_4~(2-)比值的影响,比值大于7,对厌氧体系只产生轻度抑制作用.而后者与沼气中H_2S含量有直接关系,沼气中H_3S含量小于40mg/L时,基本不产生抑制作用. 相似文献
752.
以拜耳法赤泥为原料,采用硫酸浸取的方法浸出铝和铁,通过加入硅酸钠溶液制备出高效絮凝剂聚合硅酸硫酸铝铁(PSAFS)。研究考察了制备聚合硅酸硫酸铝铁的酸浸工艺参数,并评价了其絮凝效果。结果表明,硫酸浓度35%,液固比5.5 mL/g,酸浸温度90℃,酸浸时间2.0 h为最佳酸浸条件,由此制备的PSAFS对综合污水浊度、COD、总磷和总磷酸盐的去除率分别达到61.7%、61.8%、81.7%和81.1%。对比试验表明,该絮凝剂与市售PAC、PFC相比具有相当或更优的污染物去除效果,且形成的絮体具有粗大、致密的特点。该工艺为拜耳法赤泥的综合利用开辟了一条新途径。 相似文献
753.
在循环流厌氧反应器中研究了无机条件下采用厌氧颗粒污泥启动硫酸盐型厌氧氨氧化(S-ANAMMOX)的反应特性。结果表明:在1~124 d的运行时间内,从第37天开始出现了NH4+-N和SO_4~(2-)的同步去除,生成NO_2~-,NO_3~-,反应最终产物为N2和单质硫,NH4+-N和SO_4~(2-)的最高去除率分别达到92.47%和59.3%;当进水nN∶nS较高时,能显著提高NH4+-N去除率和总氮去除率;SO_4~(2-)与NH4+发生氧化还原反应产生NO2-和NO3-是pH降低的过程;进水nN∶nS、进水平均NH_4~+-N、SO_4~(2-)质量浓度和HRT均对S-ANAMMOX反应的氮硫转化比有一定影响,表明S-ANAMMOX反应是一个多步反应。 相似文献
754.
采用树脂负载零价纳米铁(NZVI-resin)作为铁源,活化过硫酸钠,产生硫酸根自由基氧化降解偶氮染料甲基橙。考察了温度、NZVI-resin加入量、pH值及过硫酸钠的浓度等因素对甲基橙降解率的影响,并对其降解动力学规律作了初步探讨。结果表明:降解反应遵循准一级反应动力学,在pH=3.0、Fe0=0.2 g.L-1、Na2S2O8=1.33 g.L-1的条件下,30 mg.L-1的甲基橙溶液降解率为99.7%。 相似文献
755.
垃圾渗滤液经一般生化处理后色度很大。对混凝和芬顿法结合深度处理垃圾渗滤液对色度去除进行了研究。混凝段通过中心复合设计(简称CCD)和响应面方法(简称RSM)分析了混凝的色度去除率的响应特征,建立了实际因素的最终方程模型:Y(色度去除率,%)=-553.40+73.74A+229.06B+0.38AB-34.16A2-22.67B2,(Y、A、B分别代表色度去除率、投加量和pH)并对絮凝条件进行优化,得到混凝反应的最佳优化条件:投加量1.11 g/L,pH 5.06,及在此条件下的去除率67.2%。在芬顿段,将芬顿反应对水中亲水性有机物相对含量(UV254)与对色度的去除特征相结合进行了研究,证明色度的去除跟该类有机物的去除有关,色度去除率最优值条件选择为H2O2/COD=1.0,Fe2+/H2O2=0.35∶1,而初始pH=2.5时对色度的去除达到99%以上。整个工艺出水可达到达标排放标(GB16889-2008)。 相似文献
756.
757.
Surya Kalyani S Jitender Sharma Surender Singh Prem Dureja Lata 《Journal of environmental science and health. Part. B》2013,48(7):663-672
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo-dioxathiepin-3-oxide) is a cyclodiene organochlorine currently used as an insecticide all over the world and its residues are posing a serious environmental threat. This study reports the enrichment and isolation of a microbial culture capable of degrading endosulfan with minimal production of endosulfan sulfate, the toxic metabolite of endosulfan, from tropical acid soil. Enrichment was achieved by using the insecticide as sole sulfur source. The enriched microbial culture, SKL-1, later identified as Pseudomonas aeruginosa, degraded up to 50.25 and 69.77 % of α and β endosulfan, respectively in 20 days. Percentage of bioformation of endosulfan sulfate to total formation was 2.12% by the 20th day of incubation. Degradation of the insecticide was concomitant with bacterial growth reaching up to an optical density of 600 nm (OD600) 2.34 and aryl sulfatase activity of the broth reaching up to 23.93 μg pNP/mL/hr. The results of this study suggest that this novel strain is a valuable source of potent endosulfan–degrading enzymes for use in enzymatic bioremediation. Further, the increase in aryl sulfatase activity of the broth with the increase in degradation of endosulfan suggests the probable involvement of the enzyme in the transformation of endosulfan to its metabolites. 相似文献
758.
759.
王丰丰 《辽宁城乡环境科技》2007,27(2):34-36
为电解铝生产企业提供清洁生产审核时的参考,结合现阶段我国电解铝行业生产特点及污染成因分析,从工艺改造、节能降耗、物料循环利用等方面,重点讨论了铝电解行业实施清洁生产审核的总体思路及遵循原则。 相似文献
760.
<正>Nanoparticles(NPs)from anthropogenic sources have applications in several commercial products,including cosmetics,pharmaceuticals,and materials.There is evidence that during their usage and disposal,engineered nanoparticles can and will be released into wastewater(Gottschalk et al.,2013;Pasricha et al.,2012;Westerhoff et al.,2013;Zheng et al.,2015).If water and wastewater treatment plants are inefficient or incapable of removing NPs from water,NPs will be released with the treated effluent,entering drinking water sources and natural aquatic environments,increasing exposure for plants,microorganisms, 相似文献