首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   6篇
  国内免费   58篇
安全科学   7篇
废物处理   59篇
环保管理   56篇
综合类   206篇
基础理论   30篇
污染及防治   87篇
评价与监测   1篇
社会与环境   2篇
  2023年   2篇
  2022年   15篇
  2021年   9篇
  2020年   6篇
  2019年   10篇
  2018年   11篇
  2017年   9篇
  2016年   13篇
  2015年   15篇
  2014年   46篇
  2013年   31篇
  2012年   19篇
  2011年   12篇
  2010年   5篇
  2009年   24篇
  2008年   22篇
  2007年   17篇
  2006年   26篇
  2005年   16篇
  2004年   20篇
  2003年   15篇
  2002年   11篇
  2001年   23篇
  2000年   15篇
  1999年   6篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   4篇
排序方式: 共有448条查询结果,搜索用时 109 毫秒
151.
本研究主要介绍,尝试采用UASB(Upflow Anaerobic Sludge Bed)反应器厌氧工艺处理某离子交换树脂生产废水试验。研究表明,在中温(37℃±1)环境下,容积负荷在6.0-7.0kgCODcr·m^-3·d^-1时,CODcr去除率维持在80%左右,运行稳定。本试验取得的试验效果,为以后的利用厌氧技术处理离子交换树脂生产废水提供了重要依据。  相似文献   
152.
厌氧水解—高负荷生物滤池处理城镇污水的试验研究   总被引:3,自引:0,他引:3  
厌氧水解-高负荷生物滤池是一种利用附着在塑料模块填料上的微生物系统对城镇污水中的污染物质进行降解处理的绿色环保技术。厌氧水解池和高负荷生物滤池采用的塑料模块填料具有高空隙率、高附着面积、高布水性能和抗堵塞的优异性能,并无须回流。当厌氧水解池水力停留时间为4小时,生物滤池水力负荷为30米^3/米^2。日,该系统处理城镇污水的CODCr去除率达80-86%,BOD5去除率达85%-95%。SS去除率达85-95%,处理后出水上述各项指标均可满足国家二级生物处理排放标准的要求。与广泛运用的活性法处理系统相比,该技术可节约基建投资20%以上,节约能耗50%以上,同时还具有流程简单、管理方便、耐冲击负荷、剩余污泥少等特点。  相似文献   
153.
高浓度硫酸盐废水的厌氧生物处理   总被引:10,自引:0,他引:10  
对高浓度硫酸盐在废水的厌氧生物处理过程中的各种影响因素进行了综述,着重论述了硫酸盐还原菌的生态学特性,硫酸盐还原菌对产甲烷菌的抑制作用,以及各种高浓度硫酸盐废水的处理工艺。  相似文献   
154.
The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm3/kgVS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM = 70:20:10 by weight) was only 336 dm3/kgVS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant.  相似文献   
155.
The production of compost and digestate from source-separated organic residues is well established in Europe. However, these products may be a source of pollutants when applied to soils. In order to assess this issue, composts, solid and liquid digestates from Switzerland were analyzed for heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) addressing factors which may influence the concentration levels: the treatment process, the composition, origin, particle size and impurity content of input materials, the season of input materials collection or the degree of organic matter degradation.Composts (n = 81) showed mean contents being at 60% or less of the legal threshold values. Solid digestates (n = 20) had 20–50% lower values for Cd, Co, Pb and Zn but similar values for Cr, Cu and Ni. Liquid digestates (n = 5) exhibited mean concentrations which were approximately twice the values measured in compost for most elements. Statistical analyses did not reveal clear relationships between influencing factors and heavy metal contents. This suggests that the contamination was rather driven by factors not addressed in the present study.According to mass balance calculations related to Switzerland, the annual loads to agricultural soils resulting from the application of compost and digestates ranged between 2% (Cd) and 22% (Pb) of total heavy metal loads. At regional scale, composts and digestates are therefore minor sources of pollution compared to manure (Co, Cu, Ni, Zn), mineral fertilizer (Cd, Cr) and aerial deposition (Pb). However, for individual fields, fertilization with compost or digestates results in higher heavy metal loads than application of equivalent nutrient inputs through manure or mineral fertilizer.  相似文献   
156.
In some areas of Sub-Saharan Africa appropriate organic waste management technology could address development issues such as soil degradation, unemployment and energy scarcity, while at the same time reducing emissions of greenhouse gases. This paper investigates the role that carbon markets could have in facilitating the implementation of composting, anaerobic digestion and biochar production, in the city of Tamale, in the North of Ghana. Through a life cycle assessment of implementation scenarios for low-tech, small scale variants of the above mentioned three technologies, the potential contribution they could give to climate change mitigation was assessed. Furthermore an economic assessment was carried out to study their viability and the impact thereon of accessing carbon markets. It was found that substantial climate benefits can be achieved by avoiding landfilling of organic waste, producing electricity and substituting the use of chemical fertilizer. Biochar production could result in a net carbon sequestration. These technologies were however found not to be economically viable without external subsidies, and access to carbon markets at the considered carbon price of 7 EUR/ton of carbon would not change the situation significantly. Carbon markets could help the realization of the considered composting and anaerobic digestion systems only if the carbon price will rise above 75–84 EUR/t of carbon (respectively for anaerobic digestion and composting). Biochar production could achieve large climate benefits and, if approved as a land based climate mitigation mechanism in carbon markets, it would become economically viable at the lower carbon price of 30 EUR/t of carbon.  相似文献   
157.
Volatile fatty acids (VFAs), which are largely generated during the anaerobic acidification process, are considered to be reliable indicators of the stable process operation. However, the common methods for monitoring VFAs are offline, and they are typically manual requiring time-consuming, costly and complex instruments. This study aims to develop a novel online analyzer for automatic measuring VFAs, which was based on the 5-pH point titration, embedded with a proportional-integral-derivative (PID) feedback control system. The results show that it can achieve accurate and rapid monitoring of VFAs ranging between 0-400 mg/L (<9 min/sample) but simultaneously faces the problems of overtitration and interference of complex characteristics of wastewater. In order to improve its accuracy and stability, the effects of three general coefficients (KI, KP, and KD) of PID on the titration were investigated, and the optimal values of KI, KP, and KD were found to be 1.5, 1.0, and -1.0~0.5, respectively. Besides, the initial titration speed was set at 0.06 mL/min, equal to the minimum speed of the peristaltic pump, and the dichotomy approach was integrated into the PID feedback controller. Owing to the above improvements, the relative mean deviation and standard deviation of measuring VFAs in both synthetic and real wastewaters were mostly lower than 5.0% and 5.0 mg/L, proving the online analyzer is rapid, accurate and reliable.  相似文献   
158.
Is our food safe and free of the crisis of antibiotics and antibiotic resistance(AR)?And will the derived food waste(FW) impose AR risk to the environment after biological treatment? This study used restaurant FW leachates flowing through a 200 tons-waste/day biological treatment plant as a window to investigate the fate of antibiotics and antibiotic-resistance genes(ARGs) during the acceptance and treatment of FW. Sulfonamides(sulfamethazine, sulfamethoxazole) and quinolones(ciprofloxacin, enrofloxacin, ofloxacin) were detected during FW treatment, while tetracyclines, macrolides and chloramphenicols were not observable. ARGs encoding resistance to sulfonamides, tetracyclines and macrolides emerged in FW leachates.Material flow analysis illustrated that the total amount of antibiotics(except sulfamethazine) and ARGs were constant during FW treatment processes. Both the concentration and total amount of most antibiotics and ARGs fluctuated during treatment, physical processes(screening, centrifugation, solid–liquid and oil–water separation) did not decrease antibiotic or ARGs concentrations or total levels permanently; the affiliated wastewater treatment plant appeared to remove sulfonamides and most ARGs concentrations and total amount. Heavy metals Ni,Co and Cu were important for disseminating antibiotics concentrations and MGEs for distributing ARGs concentrations. Humic substances(fulvic acids, hydrophilic fractions), C-associated and N-associated contents were essential for the distribution of the total amounts of antibiotics and ARGs. Overall, this study implied that human food might not be free of antibiotics and ARGs, and FW was an underestimated AR pool with various determinants. Nonetheless, derived hazards of FW could be mitigated through biological treatment with well-planned daily operations.  相似文献   
159.
Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A(TBBPA) was successfully acclimated in an anaerobic reactor over 280 days. During the period from 0 to 280 days, the TBBPA degradation rate(DR), utilization of glucose, and VSS were monitored continuously. After 280 days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20 days of treatment in batch experiments. Based on scanning electron microscopy(SEM) observations and denaturing gradient gel electrophoresis(DGGE) determinations,the diversity of the microorganisms after 0 and 280 days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol,3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A,were identified by gas chromatography–mass spectrometry(GC–MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model.Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions.  相似文献   
160.
As a support material, zeolite can be used to promote the granulation process due to its high settable property and the ability to retain biomass on its surface. The present paper reports on the influence of zeolite addition on the hydrodynamic behavior of an expanded granular sludge bed reactor (EGSB). Different models were applied to fit the flow pattern and to compare EGSB hydrodynamic performance with and without the addition of zeolite. The experimental data fit the tanks in a series model for zeolite bed height of 5 cm and upflow velocity of 6 m/hr. Higher axial dispersion degree (D/uL) was obtained at lower heights of zeolite. The real hydraulic retention time (HRTr) was increased with both increased zeolite bed height and increased upflow velocity. The short-circuit results for 5 cm of zeolite bed and 6, 8 and 10 m/hr upflow velocity were 0.3, 0.24 and 0.19 respectively, demonstrating the feasibility of using zeolite for a proper hydrodynamic environment to operate the EGSB reactor. The presence of zeolite resulted in the higher percentage values of dead zones, ranging from 12% to 24%. Zeolite addition exerted a positive effect on the hydrodynamics pattern for this technology being advantageous for the anaerobic process because of its possible contribution to better biofilm agglomeration, granule formation and substrate-microorganism contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号