首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   6篇
  国内免费   58篇
安全科学   7篇
废物处理   59篇
环保管理   56篇
综合类   206篇
基础理论   30篇
污染及防治   87篇
评价与监测   1篇
社会与环境   2篇
  2023年   2篇
  2022年   15篇
  2021年   9篇
  2020年   6篇
  2019年   10篇
  2018年   11篇
  2017年   9篇
  2016年   13篇
  2015年   15篇
  2014年   46篇
  2013年   31篇
  2012年   19篇
  2011年   12篇
  2010年   5篇
  2009年   24篇
  2008年   22篇
  2007年   17篇
  2006年   26篇
  2005年   16篇
  2004年   20篇
  2003年   15篇
  2002年   11篇
  2001年   23篇
  2000年   15篇
  1999年   6篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   4篇
排序方式: 共有448条查询结果,搜索用时 31 毫秒
281.
Doran G  Eberbach P  Helliwell S 《Chemosphere》2006,63(11):1892-1902
The impact of oxygen diffusion from plant roots on the soil redox in the root zone in flooded rice bays was investigated using two Australian rice growing soils. The rates of production of Fe(II) and Mn(II) in pore water resulting from the reduction of soil minerals was used to gauge the extent of development of anaerobic conditions and the time taken for equilibrium to establish. Soil concentrations of readily reducible Fe were 13–28 times greater than Mn, making Fe a more reliable indicator of redox conditions than Mn. In addition, Mn(II) concentrations reached equilibrium far more rapidly than Fe, which made the identification of any contribution to soil redox by oxygen diffusing from rice plant roots difficult to observe. Dissection of soil cores showed that more than 80% of the rice root mass occurred in the top 4 cm of soil, suggesting that any contribution roots may make to the redox potential of the flooded soils would occur in this region. However, studies conducted indicated that the diffusion of oxygen from the surface floodwater into soil pore water in the 2.5 cm layer of soil was so substantial that it would mask any contribution made by rice plant roots to the overall soil redox in this root zone.  相似文献   
282.
Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24–192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively.  相似文献   
283.
The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.  相似文献   
284.
The effect of different Lystek biosolids doses on the anaerobic digestability of thickened waste activated sludge (TWAS) was evaluated in a lab- and full-scale anaerobic digester. The overall findings of this study emphasize the beneficial impact of Lystek addition to the lab- and full-scale anaerobic digesters in terms of enhanced biogas production and increased volatile suspended solids reduction (VSSR) efficiency. Lystek added at 4% by volume to TWAS increased the methane yield from 0.22 to 0.26 L CH4/g VSSadded at an solids retention time (SRT) of 10 days, and from 0.27 to 0.29 L CH4/g VSSadded at an SRT of 15 days. Furthermore, the VSSRs of 37% and 47% were observed for the TWAS, and the TWAS with 4% Lystek, while at an SRT of 15 days, the observed VSSR were 49% and 58%, respectively. The lab-scale study showed that the influence of Lystek addition on methane yield and solids destruction efficiencies was more pronounced at the shorter SRT, 20% enhancement (SRT of 10 d) vs. 9% enhancement (SRT of 15 d) for methane yield, and 27% (SRT of 10 d) vs. 22% (SRT of 15 d) for VSS destruction efficiency improvement. Furthermore, addition of 4% of Lystek to the feed of the full-scale anaerobic digester at St. Marys wastewater treatment plant (WWTP) resulted in a 50% increase in the average specific methanogenic activity and 23% increase in methane yield of the biochemical methane potential tests after eight months. The results showed that Lystek degradation kinetics were 40% faster than the TWAS, as reflected by first order kinetic coefficients of 0.053 d?1 and 0.073 d?1 for TWAS and Lystek at an SRT of 10 days.  相似文献   
285.
High rate algal ponds are an economic and sustainable alternative for wastewater treatment, where microalgae and bacteria grow in symbiosis removing organic matter and nutrients. Microalgal biomass produced in these systems can be valorised through anaerobic digestion. However, microalgae anaerobic biodegradability is limited by the complex cell wall structure and therefore a pretreatment step may be required to improve the methane yield. In this study, ultrasound pretreatment at a range of applied specific energy (16–67 MJ/kg TS) was investigated prior to microalgae anaerobic digestion. Experiments showed how organic matter solubilisation (16–100%), hydrolysis rate (25–56%) and methane yield (6–33%) were improved as the pretreatment intensity increased. Mathematical modelling revealed that ultrasonication had a higher effect on the methane yield than on the hydrolysis rate. A preliminary energy assessment indicated that the methane yield increase was not high enough as to compensate the electricity requirement of ultrasonication without biomass dewatering (8% VS).  相似文献   
286.
Palm pressed fiber (PPF) and cattle manure (CM) are the waste which can be managed properly by anaerobic co-digestion. The biogas production in co-digested PPF and CM at three volatile solids (VS) ratios of 3:1, 1:1, and 1:3 was investigated in a series of batch experiments at an organic loading rate of 30.0 g VS/L under mesophilic (37 ± 1 °C) conditions. The highest daily biogas yield of PPF and CM only, was 90.0 mL/g VSadded at day 12 and 23.4 mL/g VSadded at day 7. For co-digestion of PPF/CM at mixing ratios of 3:1, 1:1 and 1:3, there were 93.6 mL/g VSadded at day 11, 86.8 and 26.4 mL/g VSadded at day 8. VS removal rate for PPF, CM, and co-digestion at mixing ratio of 3:1, 1:1, and 1:3 were 91.1%, 86.0% and 71.0%, respectively. The anaerobic digestion of PPF and CM and their co-digestion systems were stable in operation with low range of volatile fatty acids (VFA)/TIC (total inorganic carbon) of (0.035–0.091). The main volatile fatty acids were propionic, and iso-butyric acids for PPF, iso-butyric and n-butyric acids for CM. The VFAs and ammonium inhibition were not occurred. The modified Gompertz model can be used to perform a better prediction with a lower difference between the measured and predicted biogas yields. A VS ratio of 3:1 is recommended for practice.  相似文献   
287.
Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m3 d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m3 CH4/kg VS at 3 kg VS/m3 d) than autoclaved FW (maximum 0.439 ± 0.020 m3 CH4/kg VS at 4 kg VS/m3 d). The residual methane potential of both digestates at all OLRs was less than 0.110 m3 CH4/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.  相似文献   
288.
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5, 1.0, 2.0 and 3.0 g SO(4)(2-) L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-) L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-) L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor.  相似文献   
289.
渗滤液的处理一直是生活垃圾填埋场存在的一大问题,尤其是新标准执行以来,对渗滤液的排放提出了更加严格的要求,因此处理工艺的选择成为达标排放的关键问题,本文中的“厌氧+生化+超滤+纳滤+反渗透”组合型渗滤液处理工艺能够确保污染物达标排放,并同时能满足处理后废水综合利用的要求。  相似文献   
290.
• Liquid digestate humification was investigated under different oxidizing environment. • Tryptophan-like substances dominated the transformation of the liquid digestate DOM. • The humification sequence of the liquid digestate DOM was identified. • UV325 was first identified as a pre-humus intermediate during humification reaction. The formation of humic-like acids (HLAs) is an essential process for converting liquid digestate into organic soil amendments to enhance agricultural sustainability. The aim of this study was to investigate the impact of oxygen and/or MnO2 on the production of HLAs. Herein, abiotic humification performance of the digestate dissolved organic matter (DOM) is investigated with fluxes of air and N2 in the absence and presence of MnO2. Our results demonstrated that the fate of digestate DOM greatly depends on the oxidizing environment, the MnO2 enhanced nitrogen involved in the formation of HLAs. The synergistic effects of MnO2 and oxygen effectively improved the production of HLAs, and the corresponding component evolution was analyzed using spectroscopic evidence. The two-dimensional correlation spectroscopy results demonstrated that the reaction sequence of digestate DOM followed the order of protein-like substances, substances with an absorbance at 325 nm, substances with UV absorbance at 254 nm and HLAs. Additionally, excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) showed that tryptophan-like C3 was more prone to transformation than tyrosine-like C2 and was responsible for the humification process. The substance with an absorbance at 325 nm was a reaction intermediate in the transformation process of protein-like substances to HLAs. The above findings can be used to promote the production of liquid fertilizer associated with carbon sequestration as well as the sustainable development of biogas production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号