首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   3篇
  国内免费   20篇
安全科学   2篇
废物处理   3篇
环保管理   17篇
综合类   29篇
基础理论   16篇
环境理论   1篇
污染及防治   48篇
评价与监测   2篇
社会与环境   11篇
  2023年   1篇
  2022年   8篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   11篇
  2012年   11篇
  2011年   9篇
  2010年   7篇
  2009年   12篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有129条查询结果,搜索用时 0 毫秒
121.
Arctic Climate Tipping Points   总被引:1,自引:0,他引:1  
Lenton TM 《Ambio》2012,41(1):10-22
There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.  相似文献   
122.
During the summers of 2008 and 2009, net methane(CH4) and nitrous oxide(N2O) fluxes were investigated from 4 tundra ecotopes: normal lowland tundra(LT), bird sanctuary tundra(BT), the tundra in an abandoned coal mine(CT) and the tundra in scientific bases(ST) in Ny-Alesund of the High Arctic. Tundra soils in CT(184.5 ± 40.0 μg CH4/(m2·hr)) and ST(367.6 ± 92.3 μg CH4/(m2·hr)) showed high CH4 emissions due to the effects of human activities, whereas high CH4 uptake or low emission occurred in the soils of LT and BT.The lowland tundra soils(mean,-4.4-4.3 μg N2O/(m2·hr)) were weak N2 O sources and even sinks. Bird activity increased N2 O emissions from BT with the mean flux of7.9 μg N2O/(m2·hr). The mean N2 O fluxes from CT(45.4 ± 10.2 μg N2O/(m2·hr)) and ST(78.8 ± 18.5 μg N2O/(m2·hr)) were one order of magnitude higher than those from LT and BT, indicating that human activities significantly increased N2 O emissions from tundra soils. Soil total carbon and water regime were important factors affecting CH4 fluxes from tundra soils. The N2 O fluxes showed a significant positive correlation with ammonia nitrogen(NH4+-N) contents(r = 0.66, p 〈 0.001) at all the observation sites, indicating that ammonia nitrogen(NH4+-N) content acted as a strong predictor for N2 O emissions from tundra soils. The CH4 and N2O fluxes did not correspond to the temperature variations of soil at 0-15 cm depths.Overall our results implied that human activities might have greater effects on soil CH4 and N2O emissions than current climate warming in Ny-Alesund, High Arctic.  相似文献   
123.
Measurements of gaseous elemental mercury(Hg~0) in the marine boundary layer of the western Bering Sea were performed using an automatic mercury analyzer RA 915 +(Ltd. Lumex, St. Petersburg, Russia) aboard the Russian research vessel Academician M.A.Lavrentev from 3 to 20 August 2013. Hg~0 concentrations varied from 0.3 to 2.1 ng/m~3(n = 4783);the average value(1.1 ± 0.3 ng/m~3) was lower than both the background range of the Northern Hemisphere(1.5–1.7 ng/m~3) and average values previously observed in the Bering Sea, and corresponded to the background concentrations of the Southern Hemisphere(1.1–1.3 ng/m~3).Maximum Hg~0 concentrations were observed within air masses that came from the lower troposphere of the central Arctic. Under these conditions, Hg~0 ranged between 1.1 and 2.1 ng/m~3 with an average of 1.5 ± 0.2 ng/m~3(n = 1183). Except for these periods, Hg~0 concentrations during the rest of the study varied from 0.3 to 1.8 ng/m~3, with an average value of 1.0 ± 0.2 ng/m~3(n = 3600). Our results support the hypothesis that, in the summer, air masses from the central Arctic Ocean can be an exporter of mercury to lower latitudes. Perhaps the atmospheric transport of elevated concentrations of Hg~0 into lower latitudes may have implications for the biologic and economic health of important fisheries, such as the Bering Sea.  相似文献   
124.
The inter-conversion of nitrogen and sulfur species between the gas and particulate phases and their interaction with alkaline species influences the acidity of the aerosols and surface snow. To better understand these processes, a short field campaign was undertaken in Ny-Ålesund, Svalbard, during 13th April 2012 to 24th April 2012. Air measurements were carried out through a particulate sampler equipped with denuders and filter packs for simultaneous collection of trace gases (HNO3, NO2, SO2 and reactive nitrogen compounds) and aerosols, with daily collection of snow samples. Ionic composition of the samples was analyzed using ion chromatography technique. The results suggested that nitrate-rich aerosols are formed when PAN (peroxy acetyl nitrate) disassociates to form NO2 and HNO3 which further hydrolyzes to form pNO3? (particulate nitrate). This resulted in a high contribution of pNO3? (62%) to the total nitrogen budget over the study area. The acidity of the aerosols and snow evaluated through cation/anion ratio (C/A) indicated alkaline conditions with C/A > 2. The bicarbonates/carbonates of Mg2 + played an important role in neutralization processes of surface snow while the role of NH3 was dominant in aerosol neutralization processes. Such neutralization processes can increase the aerosol hygroscopicity causing warming. Chloride depletion in the snow was significant as compared to the aerosols, indicating two important processes, scavenging of coarse sea salt by the snow and gaseous adsorption of SO2 on the snow surface. However, a more systematic and long term study is required for a better understanding of the neutralization processes and chemical inter-conversions.  相似文献   
125.
Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981–2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades.  相似文献   
126.
In recent years, Dechloranes have beenwidely detected in the environment around the world. However, understanding and knowledge of Dechloranes in remote regions, such as the Arctic, remain lacking. Therefore, the concentrations of 5 Dechloranes in surface seawater, sediment, soil, moss, and dung collected from Ny-Ålesund in the Arctic were measured with the concentrations 93 pg/L, 342, 325, 1.4, and 258 pg/g, respectively, which were much lower than those in Asian and European regions. The mean ratios of anti-Dechlorane Plus (DP) to total DP (fanti) in seawater, sediment, soil, moss, dung, and atmospheric samples were 0.36, 0.21, 0.18, 0.27, 0.66, and 0.43, respectively. Results suggested that the main source of DP in seawater, sediment, soil, andmosswas long-range atmospheric transport. However, the ratio identified in dung was different, for which the migration behavior of the organism is probably themain source of DP.  相似文献   
127.
In recent years, Dechloranes have been widely detected in the environment around the world. However, understanding and knowledge of Dechloranes in remote regions, such as the Arctic, remain lacking. Therefore, the concentrations of 5 Dechloranes in surface seawater, sediment, soil, moss, and dung collected from Ny-Ålesund in the Arctic were measured with the concentrations 93 pg/L, 342, 325, 1.4, and 258 pg/g, respectively, which were much lower than those in Asian and European regions. The mean ratios of anti-Dechlorane Plus (DP) to total DP (?anti) in seawater, sediment, soil, moss, dung, and atmospheric samples were 0.36, 0.21, 0.18, 0.27, 0.66, and 0.43, respectively. Results suggested that the main source of DP in seawater, sediment, soil, and moss was long-range atmospheric transport. However, the ratio identified in dung was different, for which the migration behavior of the organism is probably the main source of DP.  相似文献   
128.
中国第四次北极科考航线上黑碳和臭氧的变化特征   总被引:2,自引:0,他引:2  
利用2010年7月1日至9月20日中国第四次北极科学考察的大气成分在线观测资料,对考察航线上黑碳气溶胶(BC)、臭氧(O3)和B波段紫外辐射(UVB)的分布特征进行了分析.结果显示,这些要素总体上随纬度的增加而递减,其最大值出现在我国东部海域,最低值出现在北冰洋.进入白令海后,BC浓度变化相对平稳,白令海和北冰洋的BC平均浓度分别为15.6ng·m-3和10.5ng·m-3.白令海的平均O3体积分数比北冰洋高,分别为18.9×10-9和15.7×10-9.但在75°N以北海区O3体积分数有所升高,在80°N以北达到17.0×10-9,这一现象可能与海冰密集度和冰上光化学过程有关.UVB辐照度在中低纬地区有显著的日变化,由于在北冰洋航行期间处于极昼期,其变化幅度较小.UVB受天气影响明显,尤其是遇上气旋的阴雨天气,UVB强度较弱.  相似文献   
129.
Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01381-1) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号