首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   20篇
  国内免费   186篇
安全科学   4篇
废物处理   7篇
环保管理   25篇
综合类   281篇
基础理论   108篇
污染及防治   186篇
评价与监测   53篇
社会与环境   7篇
  2023年   6篇
  2022年   12篇
  2021年   15篇
  2020年   15篇
  2019年   16篇
  2018年   10篇
  2017年   16篇
  2016年   37篇
  2015年   21篇
  2014年   27篇
  2013年   43篇
  2012年   36篇
  2011年   63篇
  2010年   43篇
  2009年   44篇
  2008年   60篇
  2007年   36篇
  2006年   40篇
  2005年   16篇
  2004年   14篇
  2003年   10篇
  2002年   8篇
  2001年   3篇
  2000年   14篇
  1999年   10篇
  1998年   14篇
  1997年   6篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有671条查询结果,搜索用时 31 毫秒
161.
This study deals with the characterisation of early responses of roots of Salix matsudana in respect to oxidative stress, subcellular distribution, and chemical forms when exposed to 50 μmol/L Cd. Within 12 h, the root length is reduced and the contents of O2??, H2O2, and malondialdehyde are increased by 49%, 43%, and 35%. Cd is mainly retained in the cell walls; small amounts are distributed into other cell organelles. The largest proportion of Cd is found in the NaCl extractable, pectate-, and protein-integrated fraction.  相似文献   
162.
163.
砷锑钼蓝分光光度法快速测定水和废水中的微量砷   总被引:2,自引:0,他引:2  
丘星初  朱盈权  鄢建平  丘山 《环境科学》1995,16(3):49-51,43
研究了砷锑钼三元杂多酸的形成条件及其还原产物的光度性质。结果表明:显色体系呈大吸收位于865um处,ε'(865)=2.1×104L·mol(-1)·cm(-1)。在室温下能稳定24h。砷量在0—40μg/10ml遵守比尔定律,r=0.9991。用丘氏定砷器使砷呈AsH3逸出分离。  相似文献   
164.
联合应用高效雾化器、缝式石英管火焰原子吸收法,采用萃取富集技术测定砷,使砷的灵敏度改善267倍,同时消除了大量盐类的干扰,避免了钠、铝等对石英管的损坏。考察了溶液酸度、碘化钾用量、共存离子等因素对实验的影响。该方法的线性范围为0~25μg/L,检出限为。3μg/L,相对标准偏差为3.2%,回收率为97.8%~101.0%,用于环境水样中痕量砷的监测,结果令人满意。  相似文献   
165.
This study investigated the status of arsenic (As) exposure from groundwater and rice, and its methylation capacity in residents from the Red River Delta, Vietnam. Arsenic levels in groundwater ranged from <1.8 to 486 μg/L. Remarkably, 86% of groundwater samples exceeded WHO drinking water guideline of 10 μg/L. Also, estimated inorganic As intake from groundwater and rice were over Provisional Tolerable Weekly Intake (15 μg/week/kg body wt.) by FAO/WHO for 92% of the residents examined. Inorganic As and its metabolite (monomethylarsonic acid and dimethylarsinic acid) concentrations in human urine were positively correlated with estimated inorganic As intake. These results suggest that residents in these areas are exposed to As through consumption of groundwater and rice, and potential health risk of As is of great concern for these people. Urinary concentration ratios of dimethylarsinic acid to monomethylarsonic acid in children were higher than those in adults, especially among men, indicating greater As methylation capacity in children.  相似文献   
166.
167.
Bioremediation of arsenic contaminated soils and groundwater shows a great potential for future development due to its environmental compatibility and possible cost-effectiveness. It relies on microbial activity to remove, mobilize, and contain arsenic through sorption, biomethylation–demethylation, complexation, coprecipitation, and oxidation–reduction processes. This paper gives an evaluation on the feasibility of using biological methods for the remediation of arsenic contaminated soils and groundwater. Ex-situ bioleaching can effectively remove bulk arsenic from contaminated soils. Biostimulation such as addition of carbon sources and mineral nutrients can be applied to promote the leaching rate. Biosorption can be used either ex-situ or in-situ to remove arsenic from groundwater by sorption to biomass and/or coprecipitation with biogenic solids or sulfides. Introduction of proper biosorbents or microorganisms to produce active biosorbents in-situ is the key to the success of this method. Phytoremediation depends on arsenic-hyperaccumulating plants to remove arsenic from soils and shallow groundwater by translocating it into plant tissues. Engineering genetic strategies can be employed to increase the arsenic-hyperaccumulating capacity of the plants. Biovolatilization may be developed potentially as an ex-situ treatment technology. Further efforts are needed to focus on increasing the volatilization rate and the post-treatment of volatilization products.  相似文献   
168.
This study investigated total arsenic (As) and As species contents of oysters (Crassostrea gigas) in different production areas, seasons and sea locations on the southwestern coast of Taiwan. Analytical results indicate that contents of total As, arsenite, arsenate, dimethylarsinic acid, monomethylarsonic acid and arsenobetaine in oysters are 9.90 ± 3.68, 0.091 ± 0.104, 0.033 ± 0.038, 0.529 ± 0.284, 0.037 ± 0.046 and 3.94 ± 1.33 mg/g (dry wt), respectively. A ratio of inorganic As concentrations to total As concentrations is 1.26%. Total As contents of oysters cultured in the outer sea are statistically significantly lower than those of oysters cultured in the inner sea. The total As contents of oysters is the highest in Putai, where the blackfoot disease prevails. The low As contents in oysters is attributed to the low temperature in winter, which slows the metabolism of oysters. A maximum value is 33.37 μg/g (dry) in Putai in spring, because a considerable amount of aquacultural waste water with high As contents is discharged into adjacent drainage channels and rivers there during that season.  相似文献   
169.
Sewage sludge (SS) can be applied to cropland to supply and recycle nutrients and organic carbon. Potentially toxic elements in the sludge, however, are of environmental concern. This study evaluates the changes in chemical speciation of Zn in three representative pristine soils of the Pampas Region, Argentina, measured with sequential extraction over a one-year period. Pure SS or SS containing 30% (DM) of its own incineration ash (AS) was applied to the soils at an application rate of 150Mgha(-1). Zn was sequentially fractionated into exchangeable, organically bound, inorganic and residual fractions. The application of the SS and AS amendments significantly increased Zn concentration in all soil fractions at each sampling date. At day 1, Zn was mainly found in the residual fraction. A year after the application of the amendments, redistribution towards the inorganic fraction was observed (41-76% of total Zn content). Zn found in exchangeable and inorganic fractions depended on soil pH rather than on the type of soil used. A negative and significant correlation was found between exchangeable Zn concentrations and soil pH (r=0.94), and a positive and significant correlation between inorganic Zn concentrations and soil pH (r=0.92). For each amended soil and sampling date, no significant differences were observed between SS or AS treatments for the exchangeable fraction. Moreover, the use of AS did not cause significant differences in Zn concentration in the other soil fractions compared to SS. Based on these results, land spreading of AS may be similar to SS diaposal in terms of Zn mobility.  相似文献   
170.
Arsenic oxidation (As(III) to As(V)) and As(V) removal from water were assessed by using TiO2 immobilized in PET (polyethylene terephthalate) bottles in the presence of natural sunlight and iron salts. The effect of many parameters was sequentially studied: TiO2 concentration of the coating solution, Fe(II) concentration, pH, solar irradiation time; dissolved organic carbon concentration. The final conditions (TiO2 concentration of the coating solution: 10%; Fe(II): 7.0 mg l−1; solar exposure time: 120 min) were applied to natural water samples spiked with 500 μg l−1 As(III) in order to verify the influence of natural water matrix. After treatment, As(III) and total As concentrations were lower than the limit of quantitation (2 μg l−1) of the voltammetric method used, showing a removal over 99%, and giving evidence that As(III) was effectively oxidized to As(V). The results obtained demonstrated that TiO2 can be easily immobilized on a PET surface in order to perform As(III) oxidation in water and that this TiO2 immobilization, combined with coprecipitation of arsenic on Fe(III) hydroxides(oxides) could be an efficient way for inorganic arsenic removal from groundwaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号