全文获取类型
收费全文 | 392篇 |
免费 | 17篇 |
国内免费 | 165篇 |
专业分类
安全科学 | 13篇 |
废物处理 | 6篇 |
环保管理 | 47篇 |
综合类 | 294篇 |
基础理论 | 93篇 |
污染及防治 | 66篇 |
评价与监测 | 32篇 |
社会与环境 | 22篇 |
灾害及防治 | 1篇 |
出版年
2024年 | 6篇 |
2023年 | 19篇 |
2022年 | 22篇 |
2021年 | 21篇 |
2020年 | 12篇 |
2019年 | 18篇 |
2018年 | 11篇 |
2017年 | 16篇 |
2016年 | 34篇 |
2015年 | 25篇 |
2014年 | 21篇 |
2013年 | 38篇 |
2012年 | 34篇 |
2011年 | 43篇 |
2010年 | 21篇 |
2009年 | 30篇 |
2008年 | 35篇 |
2007年 | 44篇 |
2006年 | 20篇 |
2005年 | 20篇 |
2004年 | 16篇 |
2003年 | 9篇 |
2002年 | 4篇 |
2001年 | 10篇 |
2000年 | 11篇 |
1999年 | 5篇 |
1998年 | 1篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 8篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 1篇 |
排序方式: 共有574条查询结果,搜索用时 0 毫秒
391.
将PS-DCDA树脂用于水相中As(Ⅴ)的吸附净化处理,探讨了溶液的pH值、初始As(Ⅴ)质量浓度、接触时间、温度、NaCl、竞争性阴离子等因素对吸附性能的影响,并研究了其对As(Ⅴ)的吸附等温线、动力学和热力学。结果表明,NaCl和竞争性阴离子(Cl-、SO24-、CO23-、NO3-、HPO24-等)明显地抑制了PS-DCDA树脂对As(Ⅴ)的吸附。PS-DCDA树脂对As(Ⅴ)的吸附符合Langmuir等温式,准二级吸附动力学方程能够很好地描述As(Ⅴ)在树脂上的吸附动力学行为。粒子内扩散方程表明,表面吸附和内部扩散参与到As(Ⅴ)的吸附过程当中。PS-DCDA树脂对As(Ⅴ)的热力学参数表明,PS-DCDA树脂对As(Ⅴ)的吸附是自发的、吸热的过程。已吸附As(Ⅴ)的PS-DCDA树脂可以用0.1 mol/L NaOH有效解吸,解吸后的树脂对As(Ⅴ)仍具有较高的吸附量。 相似文献
392.
原子荧光光谱仪同时测定样品中的砷和汞 总被引:1,自引:0,他引:1
用原子荧光光度计,采用顺序注射自动进样技术同时测定不同样品中的砷和汞,并进行了仪器工作条件的优化,砷、汞的检出限分别可达0.2μg/L和0.015μg/L,样品的加标回收率砷为92%~103%,汞为98%~104%,完全能够满足环保行业不同样品砷和汞的含量的检测。该方法具有一次性处理样品,同时测定样品中砷和汞含量的优点,操作简单、快速,节省试剂。 相似文献
393.
黄土高原草地植被与土壤固碳量研究 总被引:6,自引:0,他引:6
在黄土高原自东南向西北,采用样带多点调查与定位监测相结合的研究方法,系统分析了不同草地类型封禁初期和封禁11 a草地生物量与固碳量变化特征。结果表明:4种草地类型地上活体植物、凋落物/地下活体根系和土壤中碳密度与碳储量分布规律均为森林草原>梁塬典型草原>丘陵典型草原>荒漠草原;草地封禁11 a,地上活体植物、凋落物、0~100 cm活体根系和土壤中碳密度总量,森林草原类型为63.38~97.65 t·hm-2,梁塬典型草原类型为49.04~68.80 t·hm-2,丘陵典型草原类型为52.33~62.11 t·hm-2,荒漠草原类型为11.93~19.62 t·hm-2;碳储量4种草地类型分别为230.287 7 Tg C、332.306 7 Tg C、484.055 5 Tg C和113.856 3 Tg C;黄土高原草地总固碳量为573.10 Tg C,其中:活体植物为42.89 Tg C,占总固碳量的7.48%;凋落物为80.40 Tg C,占14.03%;活体根系为108.66 Tg C,占18.96%;土壤为341.15 Tg C,占59.53%。这充分表明,封禁不仅能使草地植被快速恢复和生物量增加,而且也是提高草地固碳潜力的一条重要途径。 相似文献
394.
Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely
followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere
is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy,
the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions.
In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition.
There are a number of potential opportunities that render sequestration economically viable. In this study, we review these
most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural
production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic
benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the
most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated
to be 76 Tg C/year, which would amount to an expenditure of $11.1–13.9 billion/year. Best management practices could enhance
carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the
next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C
in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed
studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon
sequestration. 相似文献
395.
水稻铁膜对砷(As)的固定及其体内As的转运深刻影响着糙米中As的累积.施硅(Si)能够抑制水稻对As的累积,然而,施Si如何调控铁膜对As的固定和水稻各部位的As向糙米的转运,相关机制目前尚未十分清楚.以As超标土壤中的水稻铁膜为研究对象,通过开展不同Si处理水平的土壤盆栽试验,研究施Si对水稻根表铁膜固定As和各组织器官中As向糙米转运的影响及作用机制.结果表明,Si2(0.66 g·kg-1)处理显著提高了水稻根系CAT(1.81倍)、SOD(7.98倍)和POD(1.25倍)酶活性,增加了铁膜中的DCB-Fe含量(44.35%),提高了铁膜的表面粗糙度(108.91%),导致铁膜的DCB-As含量明显升高(88.32%);而且,Si2处理显著增加了水稻根中As的累积率,降低了根和叶对As的转运能力,最终导致糙米中As含量的显著降低(53.12%).施Si增强水稻根表铁膜对As固定的原因可归结于Si促进铁膜的形成和增大铁膜的表面粗糙度,而施Si抑制根和叶中As向糙米的转运则可能与Si竞争水稻体内As的转运蛋白,促进As-巯基络合物形成以及增强As液泡区隔化等... 相似文献
396.
岩溶作用过程积极的参与着碳循环,但在全球碳循环研究中并未对其加以重视。以自动化监测技术为手段,对处于茂兰原生森林区板寨地下河流域进行了一个水文年的实时监测,发现该流域水循环岩溶碳汇值高达353.16tC/a,折合11.8tC/(km2·a)。在此过程中,水循环方式是影响岩溶碳汇的主要因子,潮湿多雨、蒸发量小的天气有利于流域产流,从而可增强碳汇。基于前期森林调查数据,计算得该流域森林植被光合作用碳汇值为454.14tC/a,相当于该区岩溶碳汇的1.3倍。由于光合作用碳汇远大于森林植被的净碳汇,且该区代表了亚热带岩溶区森林顶级生态系统及亚热带岩溶区森林碳汇的最高水平。这说明在亚热带岩溶区,水循环碳汇量与森林植被净碳汇量同等重要,甚至更重要。 相似文献
397.
不同耕作措施对渭北旱塬土壤碳库管理指数及其构成的影响 总被引:4,自引:0,他引:4
以渭北旱塬9 a(2007—2016年)的不同耕作定位试验为对象,研究了在秸秆还田条件下3种连年单一耕作即翻耕(CC)、免耕(NN)、深松(SS)和3种轮耕措施即免耕-深松(NS)、深松-翻耕(SC)、翻耕-免耕(CN)对农田土壤固碳速率(CSE)、碳库管理指数(CPMI)、小麦产量和秸秆还田后表观腐殖化系数的影响。结果表明:以翻耕(CC)作为参照土样,免耕提高了0~10 cm表层土壤的固碳速率、有机碳(SOC)及其易氧化组分(EOC)的含量,并增加了表层(0~10 cm)土壤的碳库管理指数(CPMI),在>10 cm土层SOC、EOC含量虽有所减少,但提高了有机碳的稳定系数(KOS);深松则提高了表层和35~50 cm土层的SOC、EOC含量、CSE及CPMI,并增加了0~10 cm、35~50 cm土层的EOC/SOC值和10~20 cm土层的KOS;轮耕处理各土层的CSE、SOC和EOC含量均有所增加,且增加了0~10 cm、35~50 cm土层的EOC/SOC值,其中NS和CN轮耕处理各层CPMI都有所增加。深松、免耕和轮耕处理提高了小麦产量和小麦秸秆量,其中NS处理增加幅度最大,分别为14.3%(籽粒)和12.9%(秸秆);进行9 a小麦秸秆还田,免耕、深松和轮耕措施提高了还田秸秆的表观腐殖化系数,其中NS处理的表观腐殖化系数显著高于翻耕处理。 相似文献
398.
本文参考美国EPA测定生物组织中砷的样品前处理方法,利用石墨炉原子吸收法测定生物体中砷,并确定了一套完整的样品测定的质控措施,该方法保证了生物组织中砷测定的快速、准确、可靠。 相似文献
399.
施氏矿物是天然的砷吸附剂,但其存在酸性条件下对As(III)吸附性能较弱且无法对As(III)氧化降毒的缺陷. 采用液相沉淀法成功制备出锰氧化物负载施氏矿物(MnOx@Sch),研究锰负载量、初始pH值和共存离子对MnOx@Sch去除As(III)的影响,并采用吸附动力学结合XPS、FTIR及TEM等表征探究该过程的机理. 结果表明:在初始pH=3、投加量为0.5 g·L-1、As(III)初始浓度为1 mg·L-1的条件下,As(III)与MnOx@Sch反应后的剩余浓度仅为2.42~3.38 μg·L-1.MnOx@Sch去除As(III)受初始pH影响较小,H2PO4-共存时As(III)去除存在明显的抑制作用. MnOx@Sch 去除As(III)的过程符合准二级动力学方程和颗粒内扩散方程. 液相化学组分和固相产物表征分析显示MnOx@Sch对As(III)的去除机理可概括为As(III)氧化、静电吸附和络合配位及配体交换. 研究结果可为施氏矿物及其改性材料应用于酸性矿山废水砷污染治理提供理论依据. 相似文献
400.