首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   17篇
  国内免费   165篇
安全科学   13篇
废物处理   6篇
环保管理   47篇
综合类   294篇
基础理论   93篇
污染及防治   66篇
评价与监测   32篇
社会与环境   22篇
灾害及防治   1篇
  2024年   6篇
  2023年   19篇
  2022年   22篇
  2021年   21篇
  2020年   12篇
  2019年   18篇
  2018年   11篇
  2017年   16篇
  2016年   34篇
  2015年   25篇
  2014年   21篇
  2013年   38篇
  2012年   34篇
  2011年   43篇
  2010年   21篇
  2009年   30篇
  2008年   35篇
  2007年   44篇
  2006年   20篇
  2005年   20篇
  2004年   16篇
  2003年   9篇
  2002年   4篇
  2001年   10篇
  2000年   11篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   8篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
排序方式: 共有574条查询结果,搜索用时 15 毫秒
411.
Carbon Sequestration Potential of Indian Forests   总被引:3,自引:0,他引:3  
The forestry sector can not only sustain its carbon but also has the potential to absorb carbon from the atmosphere. India has maintained approximately 64 Mha of forest cover for the last decade. The rate of afforestation in India is one of the highest among the tropical countries, currently estimated to be 2 Mha per annum. The annual productivity has increased from 0.7 m3 per hactare in 1985 to 1.37 m3 per hectare in 1995. Increase in annual productivity directly indicates an increase in forest biomass and hence higher carbon sequestration potential. The carbon pool for the Indian forests is estimated to be 2026.72 Mt for the year 1995. Estimates of annual carbon uptake increment suggest that our forests and plantations have been able to remove at least 0.125 Gt of CO2 from the atmosphere in the year 1995. Assuming that the present forest cover in India will sustain itself with a marginal annual increase by 0.5 Mha in area of plantations, we can expect our forests to continue to act as a net carbon sink in future.  相似文献   
412.
Terrestrial ecosystems store more carbon (C) than the atmosphere and provide ecosystem services (ES) such as global climate regulation, by sequestering carbon within biomass and soil. Land use land cover (LULC) change is considered a key factor, playing an important role in the dynamic variations of carbon storage. The aim of this paper is to assess the effects that LULC has had on carbon stocks and consequently on climate change regulation in north-western Morocco over 21 years. To achieve this aim, the Integrated Valuation of ES and Trade-offs (InVEST) model is used to assess status and variation in the net amount of carbon stored by the different types of LULC, and the economic value of the carbon sequestered in the remaining stock. The results show that the total carbon stock increased from 4.81TgC in 1996 to 4.98TgC in 2017. Over the 21 years, the LULC changes had the greatest effect on carbon storage - an increase of 6.87% with 0.17TgC of carbon sequestered, since the majority of unused land was changed to forest and cultivated land. Based on the global costs of atmospheric carbon, we estimate the economic value of carbon storage services to be between US$1,800,000 and US$3,570,000 for the whole period, with an average yearly increment of between US$86,000 and US$170,000. The results show that the ecosystem management has had a substantial climate mitigation effect. Also, the possibility of paying for ES could inform policy on the adoption of LULC to support livelihood and management choices.  相似文献   
413.
王亚中 《污染防治技术》2010,23(1):84-85,87
研究了一种流动注射-氢化物发生-双道原子荧光同时测定水处理剂——聚合氯化铝中汞和砷的方法。汞和砷的检出限分别为0.007ug/L和0.07ug/L,平行样相对标准偏差小于5.1%,加标回收率在90.8%~106%之间。  相似文献   
414.
Does nitrogen deposition increase forest production? The role of phosphorus   总被引:2,自引:0,他引:2  
Effects of elevated N deposition on forest aboveground biomass were evaluated using long-term data from N addition experiments and from forest observation plots in Switzerland. N addition experiments with saplings were established both on calcareous and on acidic soils, in 3 plots with Fagus sylvatica and in 4 plots with Picea abies. The treatments were conducted during 15 years and consisted of additions of dry NH4NO3 at rates of 0, 10, 20, 40, 80, and 160 kg N ha−1 yr−1. The same tree species were observed in permanent forest observation plots covering the time span between 1984 and 2007, at modeled N deposition rates of 12-46 kg N ha−1 yr−1. Experimental N addition resulted in either no change or in a decreased shoot growth and in a reduced phosphorus concentration in the foliage in all experimental plots. In the forest, a decrease of foliar P concentration was observed between 1984 and 2007, resulting in insufficient concentrations in 71% and 67% of the Fagus and Picea plots, respectively, and in an increasing N:P ratio in Fagus. Stem increment decreased during the observation period even if corrected for age. Forest observations suggest an increasing P limitation in Swiss forests especially in Fagus which is accompanied by a growth decrease whereas the N addition experiments support the hypothesis that elevated N deposition is an important cause for this development.  相似文献   
415.
Carbon dioxide (CO2) injection into saline aquifers is one of the promising options to sequester large amounts of CO2 in geological formations. During as well as after injection of CO2 into an aquifer, CO2 migrates towards the top of the formation due to density differences between the formation brine and the injected CO2. The time scales of CO2 migration towards the top of an aquifer and the fraction of CO2 that is trapped as residual gas depends strongly on the driving forces that are acting on the injected CO2.When CO2 migrates to the top of an aquifer, brine may be displaced downwards in a counter-current flow setting particularly during the injection period. A majority of the published work on counter-current flow settings have reported significant reductions in the associated relative permeability functions as compared to co-current measurements. However, this phenomenon has not yet been considered in the simulation of CO2 storage into saline aquifers.In this paper we study the impact of changes in mobility for the two-phase brine/CO2 system as a result of transitions between co- and counter-current flow settings. We have included this effect in a simulator and studied the impact of the related mobility reduction on the saturation distribution and residual saturation of CO2 in aquifers over relevant time scales. We demonstrate that the reduction in relative permeability in the vertical direction changes the plume migration pattern and has an impact on the amount of gas that is trapped as a function of time. This is to our best knowledge the first attempt to integrate counter-current relative permeability into the simulation of injection and subsequent migration of CO2 in aquifers. The results and analysis presented in this paper are directly relevant to all ongoing activities related to the design of large-scale CO2 storage in saline aquifers.  相似文献   
416.
In general, CO2 sequestration by carbonation is estimated by laboratory experimentation and geochemical simulation. In this study, however, estimation is based on a natural analogue study of the Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan. This region has great potential in terms of geological and geochemical environments for CO2 sequestration. Outcropping Miocene basalt in the study area shows extensive serpentinization and carbonation. The carbon stable isotopes of carbonates lie on the depleted side of the Lohmann meteoric calcite line, which demonstrates that the carbonates most probably precipitate directly from meteoric fluid, and water–rock interaction is less involved in the carbonation process. Oxygen stable isotope examinations also show much depleted ratios, representative of product formation under low temperatures (∼50–90 °C). This translates to a depth of 1–2 km, which is a practical depth for a CO2 sequestration reservoir. According to petrographic observation and electron microprobe analysis, the diopside grains in the basalt are resistant to serpentinization and carbonation; therefore, the fluid causing alteration is likely enriched with calcium and there must be additional sources of calcium for carbon mineralization. These derived geochemical properties of the fluid support the late Miocene sandstone and enclosed basalts as having high potential for being a CO2 sequestration reservoir. Moreover, the existing geochemical environments allow for mineralogical assemblages of ultramafic xenoliths, indicating that forsterite, orthopyroxene and feldspar minerals are readily replaced by carbonates. Based on the mineral transformation in xenoliths, the capacity of CO2 mineral sequestration of the Miocene basalt is semi-quantitatively estimated at 94.15 kg CO2 chemically trapped per 1 m3 basalt. With this value, total CO2 sequestration capacity can be evaluated by a geophysical survey of the amount of viable Miocene basalt at the potential sites. Such a survey is required in the near future.  相似文献   
417.
This work presents contact angle measurements for CO2–water–quartz/calcite systems at general sequestration pressure and temperature conditions (200–3000 psig and 77–122 °F). The effect of drop volume, repeated exposure of the substrates to dense water saturated CO2, pressure and temperature on the contact angles is examined. In the 1st measurement cycle, the contact angles for the quartz substrate varied from 46 to 48° and 47 to 46° for gaseous (water saturated) CO2 and liquid (water saturated) CO2 respectively, at 77 °F. For calcite substrate, these values varied from 45 to 48° and 42 to 40°, respectively. Remarkably, this work highlights a characteristic permanent shift in the contact angle data with repeated exposure to dense, water saturated, CO2. The contact angle data trends after repeated exposure to the dense, water saturated CO2 varied from 89 to 91° and 85 to 80° for the quartz substrate for gaseous (water saturated) CO2 and liquid (water saturated) CO2 respectively, at 77 °F. For calcite substrates, these values varied from 60 to 59° and 54 to 48°, respectively. This important observation has serious implications towards the design and safety issues, as a permanent positive contact angle shift indicates lower CO2 retention capabilities of sequestration sites due to a reduction in the capillary pressure. It is further confirmed that the permanent shift in the contact angle is due to surface phenomena. With an increase in temperature (from 77 to 122 °F), the contact angle shift is reduced from about 45° to about 20° for quartz substrates. Other observations in the contact angle data with respect to pressure are in good agreement with the trends reported in the literature.  相似文献   
418.
The role of disturbance and climate factors in determining the forest carbon balance was investigated at a Japanese cypress forest in central Japan with eddy flux measurements, tree-ring analyses, and a terrestrial biosphere model. The forest was established as a plantation after intermittent harvesting and replanting between 1959 and 1977, and acted as a strong carbon sink of approximately 500 g C m−2 year−1 for the measurement years between 2001 and 2007. A terrestrial biosphere model, BIOME-BGC, was validated using the eddy flux data at daily to interannual timescales, and the tree-ring width data at interannual to decadal timescales. According to the model simulation, during the observation period 270 ± 55 g C m−2 year−1 was additionally sequestered due to the indirect effects of the harvesting and planting, whereas the increase of CO2 concentration and the change in climate increased the sink of 110 ± 40 and 30 ± 80 g C m−2 year−1, respectively. The model simulation shows that the forest is now recovering from harvesting, and that harvesting is a more important determinant of the current carbon sink than either interannual climate anomalies or increased atmospheric CO2 concentration. We found that harvesting with long rotation length could be effective management activity in order to increase carbon sequestration, if the harvested timber is converted into products with long lifecycles.  相似文献   
419.
农田土壤固碳不仅可以减缓气候变化,而且能够提高土壤质量。推荐管理措施,如少、免耕和秸秆还田等,具有促进农田土壤有机碳(SOC)增加的巨大潜力。旱地占中国农田面积的70%以上,在固定大气CO2方面可以发挥重要作用。本研究基于黄淮海地区的一个旱地土壤肥力长期监测点数据并运用Century模型模拟了监测期间(1998~2007)土壤有机碳动态变化。在此基础上,设计了1种基础管理措施情景和4种推荐管理措施情景并模拟了它们未来20年的固碳潜力。模拟结果表明,监测期间监测点土壤有机碳密度增加2.72 Mg.hm-2,年均增加0.27 Mg.hm-2。土壤有机碳的增加主要是因为氮肥施用量的增加。模型验证结果表明,Century模型很好地模拟了监测点土壤有机碳的动态变化。各推荐管理措施均具有较大的固碳潜力,其中50%秸秆还田是比少、免耕更有效的固碳措施,而少耕+50%秸秆还田的固碳潜力最大。因此,在黄淮海地区旱地推广实施推荐管理措施是促进农田土壤固碳的有效策略,有助于减缓大气CO2浓度升高和保障国家粮食安全。  相似文献   
420.
悬移质在河流的砷以及重金属转化迁移中起着非常重要的载体作用,因此,研究悬移质吸附的影响因素,对确定河流中砷以及重金属污染状况有一定的指导意义。文章分别从温度、含沙量、水体、pH值、悬移质中有机质含量等方面对悬移质中砷的影响进行了研究,并部分的验证了前人对悬移质吸附影响因素的理论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号