首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
  国内免费   2篇
安全科学   11篇
废物处理   2篇
环保管理   36篇
综合类   7篇
基础理论   5篇
污染及防治   7篇
社会与环境   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   13篇
  2016年   11篇
  2015年   5篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   7篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2000年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
51.
• Microalgae oil application for biodiesel synthesis is discussed. • Catalytic effectiveness of ferment preparations and chemical catalyst is disputed. • Application of heterogeneous catalysts for biodiesel synthesis is reviewed. • Possibilities of catalyst regeneration is shown. Recently, there is a growing interest in the use of microalga in various fields. Microalgae have properties such as rapid reproduction and high biomass accumulation, and under certain conditions, some are able to accumulate a large amount of oil. However, microalgae oil often contains more free fatty acids than the vegetable oil and is therefore unsuitable for biodiesel synthesis using alkaline catalysts. For this reason, some authors suggest the application of heterogeneous catalysis. A particular interest in the use of immobilized enzymes has developed. Other solid substances can also be used as heterogeneous catalysts are usually metal oxides, carbonates or zeolites. The use of these catalysts results in simpler biodiesel synthesis, especially purification processes, a cleaner end product and a less polluted environment. The molar ratio of alcohol to oil is lower during enzymatic transesterification, and more than 90% ester yield is obtained using a molar ratio of alcohol to oil of 3:1 to 4.5:1. The alcohols do not have a negative effect on the effectiveness of chemical catalysts, so it is possible to use alcohols in molar ratio from 4:1 to 12:1. The optimal temperature of enzymatic process is 30℃‒50℃. An ester yield of more than 95% was obtained in 12‒48 h. Using chemical catalysts, greater than a 95% yield of esters was obtained at higher temperatures in a shorter time. Material costs of enzymatic catalysis can be reduced by reusing the catalysts directly or after regeneration.  相似文献   
52.
This work assessed the impact of fuelling an automotive engine with palm biodiesel (pure, and two blends of 10% and 20% with diesel, B100, B10 and B20, respectively) operating under representative urban driving conditions on 17 priority polycyclic aromatic hydrocarbon (PAH) compounds, oxidative potential of ascorbic acid (OPAA), and ecotoxicity through Daphnia pulex mortality test. PM diluted with filtered fresh air (WD) gathered in a minitunel, and particulate matter (PM) collected directly from the exhaust gas stream (W/oD) were used for comparison. Results showed that PM collecting method significantly impact PAH concentration. Although all PAH appeared in both, WD and W/oD, higher concentrations were obtained in the last case. Increasing biodiesel concentration in the fuel blend decreased all PAH compounds, and those with 3 and 5 aromatic rings were the most abundant. Palm biodiesel affected both OPAA and ecotoxicity. While B10 and B20 exhibited the same rate of ascorbic acid (AA) depletion, B100 showed significant faster oxidation rate during the first four minutes and oxidized 10% more AA at the end of the test. B100 and B20 were significantly more ecotoxic than B10. The lethal concentration LC50 for B10 was 6.13 mg/L. It was concluded that palm biodiesel decreased PAH compounds, but increased the oxidative potential and ecotoxicity.  相似文献   
53.
In the recent decades, the energy demand for transport and industrial sector has increased considerably. Fossil fuels which were the major fuel source for decades are no more sustainable. Biodiesel is an efficient alternative compared to depleting fossil fuels. The prospect of biodiesel as the best alternative fuel is a reliable source compared to depleting fossil fuels. Hydrogen is also considered as an attractive alternative fuel producing low emission with improved engine performance. This paper investigates the performance and emission characteristics of a single cylinder compression ignition engine using hydrogen as an inducted fuel and biodiesel, aka Pongamia pinnata as injected fuel. The experiments are conducted for different quantities of hydrogen induction through the intake manifold in order to improve the performance of the engine. The performance parameters such as brake thermal efficiency, brake specific fuel consumption, exhaust temperature and emission quantities like HC, NOX, CO, CO2 of biodiesel fueled CI engine with variable mass flow rate of hydrogen are investigated. The performances of biodiesel combined with hydrogen at varying mass flow rates are also compared. The 10 LPM hydrogen induction with biodiesel provided 0.33% increase of brake thermal efficiency compared with diesel and increase of 3.24% to biodiesel at 80% loading conditions. The emission of HC decreased by 13 ppm, CO decreased by 0.02% by volume and CO2 decreased by 3.8% by volume for biodiesel with induction of hydrogen at 10 LPM to that of neat biodiesel for 80% load conditions.  相似文献   
54.
A series of heterogeneous KF/CaO catalysts modified with transition metals (lanthanum, cerium, and zirconium) were prepared via wet impregnation method and applied to the trsansesterification process of waste cooking oil (WCO) as feedstock with methanol to biodiesel production. The structure, performance of the solid catalysts was characterized by X-ray diffraction (XRD), temperature programmed desorption of CO2 (CO2-TPD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The effect of methanol/oil molar ratio, 1reaction time, reaction temperature, catalyst amount, and stability was investigated. The results showed that 10 wt% of lanthanum, cerium, and zirconium improved the catalytic activity of KF/CaO catalyst. The maximum catalytic activity using the lanthanum doping of 10wt% on KF/CaO catalyst was reached 98.7% under the optimal reaction condition of methanol/oil molar ratio of 12:1, reaction for 1 h at reaction temperature of 65°C, and 4% (wt/wt oil) catalyst amount. In addition, the FAME yield of KF/CaO/La catalyst remained higher than 95% after 10 cycles. The promotional effect of lanthanum doping could be attributed to the enhancement of the basicity strength of KF/CaO catalyst and block the leach of Ca2+ in the transesterification reaction.  相似文献   
55.
能源植物黄连木在我国的地理分布规律   总被引:3,自引:0,他引:3  
侯新村  左海涛  牟洪香 《生态环境》2010,19(5):1160-1164
为了更好地开发利用生物柴油能源植物黄连木(Pistacia chinensis Bunge),对其在我国的地理分布规律进行了系统调查研究,结果表明:黄连木的地理分布范围为北纬18°09′~40°09′、东经96°52′~123°14′,资源遍布我国华北、华南、西南、华中、华东与西北地区的25个省、自治区、直辖市;分布区地形以高原、山地为主,土壤母岩以石灰岩为主,土壤类型以褐土为主,跨越我国温带、亚热带、热带地区;黄连木的水平分布区主要位于云南潞西—西藏察隅—四川甘孜—青海循化—甘肃天水—陕西富县—山西阳城—河北顺平—北京西山一线以东、以南,整体上呈现连续分布的特征,局部地区有一定的间断分布;从我国西部到东部,其垂直分布的上限与下限均呈现逐渐降低的趋势,从南方到北方,这种降低趋势不太明显;黄连木在我国的资源分布区可以划分为集中分布区、次集中分布区、零星分布区和沿海地带零星分布区四种类型。  相似文献   
56.
The Government of Canada has committed that Canada’s total greenhouse gas (GHG) emissions be reduced by 17% from 2005 levels by 2020. The new Renewable Fuels Regulations required 2% renewable content in diesel fuel and heating distillate oil and 5% for gasoline. This represents approximately 2.1 billion liters of ethanol and 600 million liters of biodiesel requirement per year, which would reduce GHG emissions by more than four million tones. Canada is expected to consume more fuel ethanol compared to its production capacity. The above mandates as well as the gap in consumption and production of biofuel will have enormous impact on the Canadian economy. In this backdrop, an input–output model of the Canadian economy is developed to estimate the macroeconomic impact of the ethanol and biodiesel production in Canada. The impacts on sectoral prices have also been calculated. Simulation exercises have been attempted to reach the mandates using modified Leontief model. Results show that agriculture sector is affected because of feedstock use in the biofuel sector. Mining and manufacturing industries also show a considerable impact. In addition, the impact on commodity prices cannot be ignored. Finally, to meet the target of Copenhagen commitment, the nation needs to revise the blending capacity of ethanol and biodiesel.  相似文献   
57.
In this study, a non-edible seed oil of Alexandrian Laurel (Calophyllum inophyllum L.) with higher free fatty acid content has been harnessed to produce biodiesel by transesterification process. The 20.2% free fatty acid (FFA) content was first reduced to 12.9% by using TOP degumming process. Ortho-phosphoric acid was used to esterify the refined kernel oil. Transesterification reaction was performed with NaOH as an alkaline catalyst and methanol as an analytical solvent. The effects of methanol to oil molar ratio (MR), catalyst concentration (CC), reaction temperature (TP), reaction time (TM), and stirrer speed (SS) on biodiesel conversion were studied to optimize the transesterification conditions using DOE- approach. The experimental study revealed that 9:1 MR, 0.8 wt.% CC, 60°C TP, 75 min TM and 1000 rpm SS were the optimal process control variables. The study indicated that CC was the most important control parameter in optimal methyl ester production. The optimal treatment combination yielded 97.14% of biodiesel. The profile of biodiesel was determined using gas chromatography-mass spectrometry. 1H NMR spectrum of Calophyllum inophyllum methyl ester (CIME) has been reported. The properties of the biodiesel have been found within specifications of the ASTM D6751 and EN 14214 standards and hence could be considered as a suitable alternative to diesel fuel for sustainable circulation of carbon.  相似文献   
58.
The increasing demand of renewable energy sources has pressed the need to search for biofuels. The world is not only thrusting for potential sources of biofuels but also surveilling not to hamper the food supply, particularly in the Third World countries, such as Bangladesh. Rice bran oil is a prominent source of biofuels. Rice, the main cereal in Bangladesh, is cultivated all the year round. Rice hull containing bran is mostly wasted and merely used as feedstock for cattle and for cooking purposes. This study considered rice bran as a prospective source of biodiesel in Bangladesh. The properties of oil collected from rice bran were investigated to ensure the production of biodiesel by transesterification. An economic analysis relative to Bangladesh was conducted, and the production rate of biodiesel under different percentage of catalyst was investigated.  相似文献   
59.
Owing to concerns about energy security and because of increased environmental awareness, the biofuel industry is expanding worldwide. It is therefore extremely important to be able to quantify the sustainability of biofuels in order to determine their benefits over using conventional fossil fuel derived transport fuels. This study investigates the total energy requirement and global warming potential (GWP) of the production of biodiesel from oilseed rape in the UK, using life cycle analyses. Large- and small-scale productions are compared and the sensitivity of these environmental impacts to production variables investigated. Possible changes to the processes are considered, with a view to reduce the energy requirement and global warming potential.This research shows that the scale of the production of biodiesel from oilseed rape in the UK, and the transport involved in the various stages of manufacture, has little effect on its global warming potential. It is also shown that if the rape meal and glycerol were combusted in combined heat and power plants, and the rate of application of nitrogenous fertiliser were reduced from 211 kg/ha to 100 kg/ha, the energy requirement and global warming potential savings from using biodiesel rather than ultra low sulphur diesel would increase dramatically, to 170% and 120%, respectively, on a basis of equivalent net energy content.  相似文献   
60.
Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号