首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
  国内免费   5篇
安全科学   5篇
废物处理   27篇
环保管理   18篇
综合类   11篇
基础理论   4篇
污染及防治   3篇
评价与监测   2篇
社会与环境   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   19篇
  2013年   14篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1991年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
51.
Municipal Solid Waste in general and its organic fraction in particular is a potential renewable and non-seasonal resource. In this work, a life cycle assessment has been performed to evaluate the environmental impacts of two future scenarios using biogas produced from the organic fraction of municipal solid waste (OFMSW) to supply energy to a group of dwellings, respectively comprising distributed generation using solid oxide fuel cell (SOFC) micro-CHP systems and condensing boilers. The London Borough of Greenwich is taken as the reference case study. The system is designed to assess how much energy demand can be met and what is the best way to use the digestible waste for distributed energy purposes.The system is compared with two alternative scenarios fuelled by natural gas: a reference scenario, where the electricity is supplied by the grid and the heat is supplied from condensing boilers, and a fuel cell micro-CHP system. The results show that, although OFMSW alone can only supply between 1% and 4% of the total energy demand of the Borough, a saving of ∼130 tonnes of CO2 eq per year per dwelling equipped with micro-CHP is still achievable compared with the reference scenario. This is primarily due to the surplus electricity produced by the fuel cell when the micro-CHP unit is operated to meet the heat demand. Use of biogas to produce heat only is therefore a less desirable option compared with combined heat and power production. Further investigation is required to identify locally available feedstock other than OFMSW in order to increase the proportion of energy demand that can be met in this way.  相似文献   
52.
The manufacturing of orange juice generates high volumes of orange peel waste which should not be deposited in landfill according to current recommendations. Furthermore, glycerol is a compound co-generated in biodiesel manufacturing, but the volume generated is higher than the current demand for pure glycerol. The anaerobic co-digestion of orange peel waste with residual glycerol could reduce the inhibitory effect of some compounds and provide a correct nutrient balance. Under mesophilic temperature and semi-continuous conditions, a mixture of orange peel waste-residual glycerol of 1:1 (in COD) operated favorably for organic loads up to 2.10 g VS/L. At higher organic loads, the accumulation of volatile fatty acids (VFA) and a decrease in the pH caused process destabilization. The methane yield coefficient was quite constant, with a mean value of 330 ± 51 mLSTP/g VSadded, while the organic loading rate (OLR) reached a mean value of 1.91 ± 0.37 kg VS/m3 d (17.59 ± 2.78 kg mixture/m3 d) and the hydraulic retention time (HRT) varied in a range of 8.5–30.0 d.  相似文献   
53.
This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction.  相似文献   
54.
Connections and relationships between conservation practices and community development in relation to rural sustainability have received considerable attention in recent years, especially in developing countries. Among many sound practices around the world, anaerobic digestion (AD) technology has long been encouraged as an alternative source of energy, while contributing to resource conservation and economic development initiatives in developing rural areas. Guided by the theme of sustainable development, the study examined the current applications of AD technology in Meiwan Xincun Village (MWXCV) in Hainan Province, China. Employing a self-administered questionnaire survey, face-to-face interviews and on-site observation, the study explored the diffusion process, current operation and local impacts of AD practice. The study identifies that leadership, education, technical support and local economy are key factors affecting the diffusion of AD, and governmental financial incentives are significantly effective measures to make the technology economically viable for local residents. The technology was found to fit into the rural livelihood system of the village, with considerable environmental and socio-economic benefits. Guided by the leaders of the village, the local residents generally accept and support the practice and are willing to contribute to introducing the technology in and out of the village. Suggestions regarding the utilization and diffusion of AD elsewhere are presented to enhance the potential capacity of the practice to generate benefits across rural Hainan.  相似文献   
55.
微量金属元素对牛粪厌氧发酵产气特性的影响   总被引:4,自引:0,他引:4  
在以牛粪为原料的厌氧发酵过程中,向厌氧生物反应器中分别连续投加Fe,Co,Ni等微量金属元素,研究其对牛粪厌氧发酵产气特性的影响。实验结果表明:添加适量的微量金属元素可以提高COD去除率及产气量,加速反应器的启动,但当加入微量金属元素过多时,将对微生物产生毒害,抑制微生物活性及对基质的代谢,造成产气量降低。  相似文献   
56.
根据阿维菌素废水水质的特性.采用高负荷UBF厌氧处理工艺进行实验研究.分析了进出水COD浓度的变化情况及有机负荷对COD去除率的影响,并测定了UBF的产沼气率。实验结果表明:在中温(37±1)℃条件下,当进水COD质量浓度为7500mg/L左右,水力停留时间为18h时,UBF的COD有机容积负荷达到11.5kg/(m^3·d),出水p(COD)约为2000mg/L,COD去除率可达到75%左右,每去除1kgCOD平均可产生0.6m^3沼气,且反应器运行稳定。  相似文献   
57.
We have investigated the dependence of the rate of the production of biogas upon the concentration of nickel, cobalt and iron at sub-toxic concentration and monitored its composition as amount of hydrogen, methane and carbon dioxide. The distribution of the added metals between the liquid and solid phase has also been monitored.

The results of our investigations show that the addition of any of the listed metals to the sludge may cause the production of a higher amount of biogas and influence the methane or carbon dioxide percentage. Conversely, the effect on the hydrogen production depends upon the metal added, the age of the active sludge used, and its adaptation to the susbtrate. As a general feature, during the acidogenesis phase, nickel reduces, while iron increases, the percentage of dihydrogen in the biogas, while cobalt has no influence.  相似文献   
58.
As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed.  相似文献   
59.
With more than 350 GWh per year and thousands of installations around the world, biogas is an appealing strategy in the field of energy production and industrial waste optimization. In this sense, it is of paramount importance to address the risk associated with such plants, as an increasing trend of accidents have been recorded in the last 20 years. In this work, a representative biogas production plant was considered, and a risk assessment was carried out through the combination of Recursive Operability Analysis and Failure Mode and Effects Criticality Analysis. The methodology is rigorous and allows for both the identification and the quantification of accidental scenarios due to procedural errors and equipment failures, which miss in the literature for the case of biogas. The analysis allows the automatic generation of the Fault Trees for the identified Top Events, which can be numerically solved. Results show that the most critical accidental scenario in the biogas plant here considered is the formation of an explosive air-biogas mixture, which can occur in both anaerobic digester and condensate trap. The calculated probabilities agree with the results available in literature on similar plants. Pumps and Distributed Control System were found to be the most critical components.  相似文献   
60.
Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65–90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500–1000 kg of bottom ash and up to 9.2 N m3/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 N m3/(h tBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5–99%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号