首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
  国内免费   5篇
安全科学   5篇
废物处理   27篇
环保管理   18篇
综合类   11篇
基础理论   4篇
污染及防治   3篇
评价与监测   2篇
社会与环境   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   19篇
  2013年   14篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1991年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
61.
The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.  相似文献   
62.
The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.  相似文献   
63.
中外沼气发展史略   总被引:1,自引:0,他引:1  
产甲烷菌是一种古细菌(Archebacteria),有机物在厌氧条件下的产甲烷现象早在远古便有。而有文字记载的人类发现、认识以及研究开发并利用厌氧消化产生沼气的历史还是近两千年内的事情。本文通过大量史料、史实,从化学、生物、地质和比较历史学的角度,论证了西汉四川“火井”浅层生物生成气与沼气在形成机理上的相同性,从而提出了中国是世事上最早发现并利用沼气的国家(年代可追朔到公元前一世纪)的新观点,这一研究结果比以往中国沼气史的计算方法提早了约2000年。本文还用详尽的文字论述了中外沼气的发现、沼气实验,厌氧消化工艺研究及人工制取沼气技术的发展史。  相似文献   
64.
This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.  相似文献   
65.
There is a growing interest in management of MSW through micro-treatment of organic fraction of municipal solid wastes (OFMSW) in many cities of India. The OFMSW fraction is high (>80%) in many pockets within South Indian cities like Bangalore, Chikkamagalur, etc. and is largely represented by vegetable, fruit, packing and garden wastes. Among these, the last three have shown problems for easy decomposition. Fruit wastes are characterized by a large pectin supported fraction that decomposes quickly to organic acids (becomes pulpy) that eventually slow down anaerobic and aerobic decomposition processes. Paper fraction (newsprint and photocopying paper) as well as paddy straw (packing), bagasse (from cane juice stalls) and tree leaf litter (typical garden waste and street sweepings) are found in reasonably large proportions in MSW. These decompose slowly due to poor nutrients or physical state. We have examined the suitability of these substrates for micro-composting in plastic bins by tracking decomposition pattern and physical changes. It was found that fruit wastes decompose rapidly to produce organic acids and large leachate fraction such that it may need to be mixed with leachate absorbing materials (dry wastes) for good composting. Leaf litter, paddy straw and bagasse decompose to the tune of 90, 68 and 60% VS and are suitable for composting micro-treatment. Paper fractions even when augmented with 10% leaf compost failed to show appreciable decomposition in 50 days. All these feedstocks were found to have good biological methane potential (BMP) and showed promise for conversion to biogas under a mixed feed operation. Suitability of this approach was verified by operating a plug-flow type anaerobic digester where only leaf litter gathered nearby (as street sweepings) was used as feedstock. Here only a third of the BMP was realized at this scale (0.18 m3 biogas/kg VS 0.55 m3/kg in BMP). We conclude that anaerobic digestion in plug-flow like digesters appear a more suitable micro-treatment option (2–10 kg VS/day) because in addition to compost it also produces biogas for domestic use nearby.  相似文献   
66.
In order to increase the organic loading rate (OLR) and hereby the performance of biogas plants an early warning indicator (EWI-VFA/Ca) was applied in a laboratory-scale biogas digester to control process stability and to steer additive dosing. As soon as the EWI-VFA/Ca indicated the change from stable to instable process conditions, calcium oxide was charged as a countermeasure to raise the pH and to bind long-chain fatty acids (LCFAs) by formation of aggregates. An interval of eight days between two increases of the OLR, which corresponded to 38% of the hydraulic residence time (HRT), was sufficient for process adaptation. An OLR increase by a factor of three within six weeks was successfully used for biogas production. The OLR was increased to 9.5 kg volatile solids (VS) m?3 d?1 with up to 87% of fat. The high loading rates affected neither the microbial community negatively nor the biogas production process. Despite the increase of the organic load to high rates, methane production yielded almost its optimum, amounting to 0.9 m3 (kg VS)?1. Beneath several uncharacterized members of the phylum Firmicutes mostly belonging to the family Clostridiaceae, a Syntrophomonas-like organism was identified that is known to live in a syntrophic relationship to methanogenic archaea. Within the methanogenic group, microorganisms affiliated to Methanosarcina, Methanoculleus and Methanobacterium dominated the community.  相似文献   
67.
In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m3 d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm3/kg VSfed. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm3/kg VSfed). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.  相似文献   
68.
柏静 《环境与发展》2020,(4):120-121
目前厌氧系统已广泛应用于造纸废水处理,厌氧处理系统过程中产生大量的沼气,而沼气的热值很高,很有利用的价值,而本文结合笔者曾编制的某造纸废水处理厌氧技术改造环评探讨造纸污水处理厌氧系统沼气综合利用技术。该项目的实施,既减少了造纸废水的出水浓度,又提高了节能环保效益。  相似文献   
69.
Biogas utilized for energy production needs to be free from organic silicon compounds, as their burning has damaging effects on turbines and engines; organic silicon compounds in the form of siloxanes can be found in biogas produced from urban wastes, due to their massive industrial use in synthetic product, such as cosmetics, detergents and paints.Siloxanes removal from biogas can be carried out by various methods (Mona, 2009, Ajhar et al., 2010, Schweigkofler and Niessner, 2001); aim of the present work is to find a single practical and economic way to drastically and simultaneously reduce both the hydrogen sulphide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleone et al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing the most volatile siloxane (hexamethyldisiloxane or L2) in a nitrogen stream, typically 100–200 ppm L2 over N2, through an activated carbon powder bed; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best activated carbon shows an adsorption capacity of 0.1 g L2 per gram of carbon. The next thermogravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on L2 concentration. A regenerative carbon process is then carried out by heating the carbon bed up to 200 °C and flushing out the adsorbed L2 samples in a nitrogen stream in a three step heating procedure up to 200 °C. The adsorption capacity is observed to degrade after cycling the samples through several adsorption–desorption cycles.  相似文献   
70.
A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号