首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   2篇
  国内免费   11篇
安全科学   4篇
废物处理   3篇
环保管理   12篇
综合类   30篇
基础理论   11篇
污染及防治   50篇
评价与监测   2篇
社会与环境   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   17篇
  2010年   5篇
  2009年   7篇
  2008年   15篇
  2007年   6篇
  2006年   7篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
71.
The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and pH and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition (B + S) and 94.3% via biostimulation alone (B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp., Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy (SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B + S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5% by natural attenuation after 8 weeks of treatment.  相似文献   
72.
Biodegradation of the polychlorinated naphthalenes (PCNs) 1,4-dichloronaphthalene (1,4-DCN), 2,7-dichloronaphthalene (2,7-DCN), and 1,2,3,4-tetrachloronaphthalene (1,2,3,4-TCN), by the white-rot fungus Phlebia lindtneri was investigated. 1,4-DCN was metabolized to form six metabolites by the fungus. It was estimated from GC–MS fragment patterns that the metabolites were four putative hydroxylated and two dihydrodihydroxylated compounds. One of the hydroxylated products was identified as 2,4-dichloro-1-naphthol by GC–MS analysis using an authentic standard. This intermediate indicated chlorine migration in a biological system of P. lindtneri. 2,7-DCN was metabolized to five hydroxylated metabolites and a dihydrodihydroxylated metabolite. Significant inhibition of the degradation of DCNs and formation of their metabolic products was observed in incubation with the cytochrome P-450 monooxygenase inhibitor piperonyl butoxide. The formation of the dihydrodiol-like metabolites, chlorine migration and the experiment with P-450 inhibitor suggested that P. lindtneri provides hydroxyl metabolites via benzene oxide intermediates of DCNs by a cytochrome P450 monooxygenase. In addition, P. lindtneri degraded 1,2,3,4-TCN; two hydroxylated compounds and a dihydrodihydroxylated compound were formed.  相似文献   
73.
This study involved an evaluation of the potential for bioremediation of polychlorinated biphenyls(PCBs) in the effluent from a large municipal wastewater treatment plant. It was focused on the presence of PCBs in two types of effluents: the continuous effluent present during dry weather conditions and the intermittently present effluent that was present during wet weather due to incoming stormwater. The annual discharge of PCBs for both types of effluent was calculated based on a five-year dataset(2011–2015). In addition, the toxicity and bioremediation potential of the PCBs in the effluent were also assessed. It was found that the continuous effluent was responsible for the majority of the discharged PCB into the receiving river(1821 g for five years), while the intermittent effluent contributed 260 g over the five years.The average number of chlorine per biphenyl for the detected PCB congeners showed a 19%difference between the two types of effluent, which indicated a potential for organohalide respiration of PCBs during the continuous treatment. This was further supported by a high level of tri-, tetra-and penta-chlorinated congeners accounting for 75% of the anaerobically respired PCBs. Potential for aerobic degradation and thus biomineralization of PCBs was identified for both effluents. Furthermore, toxicity of 12 dioxin-like PCBs showed that normal operation of the wastewater reduced the toxicity throughout the wastewater treatment plant.  相似文献   
74.
Abstract

Sustainable ecosystems can be designed to eliminate environmental toxins and reduce pathogen loads through the direct and indirect consequences of plant and microbial activities. We present an approach to the bioremediation of disturbed environments, focusing on petroleum hydrocarbon (PHC) contaminants. Treatment consists of incorporating a plant-based amendment to enhance ecosystem productivity and physiochemical degradation followed by the establishment of plants to serve as oxidizers and foundations for microbial communities. Promising amendments for widespread use are entire plants of the water fern Azolla and seed meal of Brassica napus (rapeseed). An inexpensive byproduct from the manufacture of biodiesel and lubricants, rapeseed meal is high in nitrogen (6% wt/wt), stimulates >100-fold increases in populations of resident Streptomyces species, and suppresses fungal infection of roots subsequently cultivated in the amended soil. Synergistic enzymatic and chemical activities of plant and microbial metabolism in root zones transform and degrade soil contaminants. Emphasis is given to mechanisms that enable PHC functionalization via reactive molecular species.  相似文献   
75.
The use of some adsorbents may decrease the toxicity of organic pollutants to microbes and plants during soil bioremediation. Experiments were conducted with 3,4-dichloroaniline (DCA) and 2,4,6-trinitrotoluene (TNT). Here we demonstrate that activated carbon can reduce the toxicity of readily available chemicals in soil by transferring them to a less available fraction. This process results in accelerated biodegradation of dichloroaniline by the inoculated Paracoccus denitrificans st. 3XA. In the case of TNT, activated carbon promotes strong binding through accelerated microbial reduction of its nitro-groups and catalytic chemical oxidation of the methyl-group and polymerisation or binding of the products formed.  相似文献   
76.
微生物制剂在城市湖泊水体生物修复中的作用   总被引:11,自引:0,他引:11  
利用微生物对富营养化的城市湖泊水体进行生物修复,使水中的污染物降解成H2O、CO2或转化成无害物质。研究表明,该微生物制剂对去除水体中的有机物、叶绿素a、氨氮和提高溶解氧等均有显著效果。为节省运输费用及延长菌液保存期,本试验用惰性粒子流化床对生物制剂进行干燥,固体菌粉末不失活性。  相似文献   
77.
A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO3 and NH4H2PO4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO4(2-) and higher concentrations of Fe(II) and CH4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.  相似文献   
78.
Since the early 1980’s there have been several different strategies designed and applied to the remediation of subsurface environment including physical, chemical and biological approaches. They have had varying degrees of success in remediating contaminants from subsurface soils and groundwater. The objective of this review is to examine the range of technologies for the remediation of contaminants, particularly petroleum hydrocarbons, in subsurfaces with a specific focus on bioremediation and electrokinetic remediation. Further, this review examines the efficiency of remediation carried out by combining bioremediation and electrokinetic remediation. Surfactants, which are slowly becoming the selected chemicals for mobilizing contaminants, are also considered in this review. The current knowledge gaps of these technologies and techniques identified which could lead to development of more efficient ways of utilizing these technologies or development of a completely new technology.  相似文献   
79.
Zusammenfassung  Mit einem Bioaktivit?tssensor kann die Aktivit?t der Mikroorganismen im Belebtschlamm gemessen werden. Das Signal des Sensors reagiert empfindlich auf eine Ver?nderung des Substratangebots und das Auftreten von toxischen Stoffen. Mit dem Bioaktivit?tssensor ist es damit einerseits m?glich,online die Belebungsstufe hinsichtlich ihrer mikrobiellen Aktivit?t zu kontrollieren und andererseits die zuflie?enden Abw?sser bezüglich ihres toxischen Potentials zu überwachen.   相似文献   
80.
土著微生物修复黑臭水体的生物技术研究   总被引:1,自引:1,他引:0  
在分析底泥污染现状的基础上,综述了近年来国内外底泥的污染现状,介绍了土著微生物修复技术的概念,相关原理及底泥的污染类型与现状;讨论了刺激或抑制土著微生物菌群代谢活性的生物技术途径,利用底泥中土著微生物修复黑臭水体是恢复河涌健康的有效方法之一,今后将有良好的发展前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号