首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   7篇
  国内免费   61篇
安全科学   13篇
废物处理   17篇
环保管理   11篇
综合类   125篇
基础理论   15篇
污染及防治   30篇
评价与监测   12篇
灾害及防治   1篇
  2023年   12篇
  2022年   6篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   8篇
  2017年   3篇
  2016年   9篇
  2015年   16篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   12篇
  2006年   11篇
  2005年   4篇
  2004年   3篇
  2003年   11篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   9篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
排序方式: 共有224条查询结果,搜索用时 203 毫秒
121.
The purpose of this study was to examine the pattern of urinary protein excretion induced by 3 consecutive days of wildland firefighting. Eighteen male active-duty military personnel served as the participants. All testing on the 3 consecutive days was conducted at a Northwestern USA fire camp. All participants consumed military-based foods containing 2620–2864?kcal/day. The work activity was evaluated with an accelerometer in association with body weight and hydration markers over the experimental period. Urinary samples were collected pre and post workshift on days 1 and 3 to assess glomerular and tubular protein excretion (total protein, albumin, β2-microglobulin, N-acetyl-β-d-glucosaminidase and creatinine). The urinary levels of glomerular and tubular protein were not significantly different. The main findings of the present study indicate that similar alterations of urinary protein composition can be observed over consecutive days of wildland firefighting, which appears to be dependent on intensity rather than total work output.  相似文献   
122.
Domestic wastewater contains a considerable amount of pathogenic organisms besides non-biodegradable organics. The conventional technologies followed for the treatment of domestic wastewater are less efficient in removing pathogenic organisms despite substantial removal of dissolved organics. The focal theme of the present investigation was to use a chemo-autotrophic activated carbon oxidation (CAACO) system, an immobilized cell reactor using chemoautotrophs (Bacillus sp.) for the treatment of domestic wastewater. The oxidation of organics and Escherichia coli in wastewater is controlled by the parameters space time, O(2)/COD, bed height and cod loading. The scheme comprised of anaerobic treatment, sand filtration and CAACO treatment removed BOD. COD, Total organic carbon (TOC), dissolved protein, total Kjeldhal nitrogen (TKN) and bacterial count (most probable number (MPN)) by 81%, 92%, 84%, 94%, 93% and 99.9997%, respectively. The low concentration of E. coli in the CAACO-treated wastewater was completely eliminated through UV irradiation in 3 min at 254 nm.  相似文献   
123.
Since the performance of algal treatment for pulp mill effluent decreases with increasing color intensity and AOX content, which mainly originate from the chlorine bleaching of Kraft pulp, the separated CEH bleaching effluent was pre-treated by both the conventional and the heterogeneous catalytic ozonation processes. An increase in the BOD(5)/COD ratio from 0.11 to 0.28 and 87% color abatement in terms of Pt-Co were achieved by catalytic ozonation, which had the best treatment performance. Biodegradability enhancement of the CEH effluent correlated well with a decrease in toxicity, high-molecular-weight-compound content, and AOX abatement. By the pre-treatment of the CEH bleaching effluent, the overall efficiencies of algal treatment of the combined pulp mill effluent in terms of the fractional removal of COD and color were increased from 76% and 53% to 86-90% and 96-99%, respectively. Effects of both the conventional and the catalytic ozonation pre-treatments on subsequent biological treatment were close to each other and they reduced the filling period of the Sequential Batch Reactor (SBR) cycle from 8 to 5 days.  相似文献   
124.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   
125.
The development of highly active carbon material catalysts in catalytic wet air oxidation(CWAO)has attracted a great deal of attention. In this study different carbon material catalysts(multi-walled carbon nanotubes,carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction,the removal of phenol was nearly100% over the functionalized multi-walled carbon,while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals,which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions,a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First,maleic acid is transformed directly into malonic acid. Second,acetic acid is oxidized into an unknown intermediate,which is then oxidized into CO2 and H2O. Finally,formic acid and oxalic acid can mutually interconvert when conditions are favorable.  相似文献   
126.
Three groups of cobalt mixed oxide catalysts(Mg/Zn-Co, Mg/Zn-Ce-C, K/Na-Mg/Zn-Ce-Co)were prepared by sol-gel or impregnation methods. The synergistic effects of transition metal, rare earth metal and alkali metal on cobalt mixed catalysts for nitrous oxide(N2O)decomposing to N2 and O2were investigated. The experimental results revealed that the catalytic activity for N2 O decomposition was promoted as Co2+was replaced partially by Zn2+/Mg2+, moreover, the characterization analysis by XRD and XPS showed that Zn2+/Mg2+replaced Co2+successfully into the spinel structure of Co3O4 and promoted significantly the catalytic activity. Especially, the addition of CeO2 and K2O/Na2O decreased the binding energy and resulted in an increase in the density of the electron cloud around Co and an improvement of the catalytic activity. Of the investigated cobalt mixed catalysts, the best catalytic activity was shown by 2% K-Zn0.5-Ce0.05-Co catalyst.  相似文献   
127.
Pd/Al2O3 was pretreated by CO, H2 and NaBH4 reduction, respectively. The reduced catalysts were tested for o-xylene oxidation and characterized by power X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed decomposition of palladium hydride (TPDH). The characterizations indicate the pretreatments lead to distinct Pd particle sizes and amount of surface activated oxygen species, which are responsible for the catalytic performance. Compared with H2 and NaBH4 reduction methods, CO reduction shows a strong interaction between Pd and Al2O3 with smaller Pd particle size and more surface activated oxygen. It exhibited excellent catalytic performance, complete oxidation of 50 ppmV o-xylene at 85°C with a WHSV of 60,000 mL/(g∙hr).  相似文献   
128.
以天津某精细化工公司生产的PVB废水处理工程为例,介绍催化氧化-EGSB-接触氧化工艺处理PVB废水的工程应用,总结并分析了工程设计及运行经验;设计处理流量500 m3/d,进水CODCr质量浓度平均值为1900 mg/L;运行结果表明:经该组合工艺处理后,出水CODCr等水质指标均满足天津市地方标准DB 12/356—2008《污水综合排放标准》中的三级排放标准。  相似文献   
129.
In the work presented in this paper, the explosion and flammability behavior of combustible dust mixtures was studied. Lycopodium, Nicotinic acid and Ascorbic acid were used as sample dusts.In the case of mixtures of two dusts, the minimum explosive concentration is reproduced well by a Le Chatelier's rule-like formula, whereas the minimum ignition energy is a linear combination of the ignition energies of the pure dusts.An unexpected behavior has been found in relation to the explosion behavior and the reactivity. When mixing Lycopodium and Nicotinic acid or Ascorbic acid, the rate of pressure rise of the mixture is much higher than the rate of pressure rise obtained by linearly averaging the values of the pure dusts (according to their weight proportions), thus suggesting that strong synergistic effects arise; but it is comparable to that of the most reactive dust in the mixture.The observed behavior seems to be linked to the presence of minerals in the Lycopodium particles which catalyze oxidation reactions of Nicotinic acid and Ascorbic acid, as suggested by TG analysis.In the case of mixtures of three dusts, a similar behavior is observed when the concentration of Lycopodium is twice that of the other two dusts.  相似文献   
130.
Sulfur Mustard (bis-(2-chloroethyl) sulphide, HD), also known as yperite, is one of the most important blister agents. It could react with a large number of biological molecules with a strong cytotoxicity effect, resulting in blistering, erosion and necrosis of the skin and various tissues. Recently, several classes of microbial enzymes have been found to be able to degrade HD with high catalytic activity but no disadvantages of the common chemical decontamination of HD. Haloalkane dehalogenases (HLDs, EC3.8.1.5) draws great research attention for environmentally friendly decontaminating HD with only nontoxic thiodiglycol produced. In order to provide theoretical reference basis for enzymatic decontamination of HD, this paper reviews the observation and evolutionary relationship, structures, substrate specificities, catalytic properties and potential applications of these HLDs with high catalytic hydrolysis of HD. The analysis shows that these HLDs belonging to the same subfamily have different substrate specificities but similar spatial structures of the catalytic triad contributing to the common SN2 nucleophilic substitution reaction mechanism for catalytic hydrolysis of HD. The paper also suggests that the problems on improving poor stability of HLDs and efficiency of catalytic hydrolysis of HD should be addressed by methods of molecular biology, genetic engineering and immobilized techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号