全文获取类型
收费全文 | 5206篇 |
免费 | 674篇 |
国内免费 | 2905篇 |
专业分类
安全科学 | 486篇 |
废物处理 | 439篇 |
环保管理 | 260篇 |
综合类 | 4773篇 |
基础理论 | 930篇 |
污染及防治 | 1751篇 |
评价与监测 | 122篇 |
社会与环境 | 17篇 |
灾害及防治 | 7篇 |
出版年
2024年 | 94篇 |
2023年 | 259篇 |
2022年 | 310篇 |
2021年 | 341篇 |
2020年 | 307篇 |
2019年 | 353篇 |
2018年 | 239篇 |
2017年 | 335篇 |
2016年 | 427篇 |
2015年 | 418篇 |
2014年 | 536篇 |
2013年 | 454篇 |
2012年 | 502篇 |
2011年 | 473篇 |
2010年 | 395篇 |
2009年 | 422篇 |
2008年 | 378篇 |
2007年 | 345篇 |
2006年 | 336篇 |
2005年 | 218篇 |
2004年 | 227篇 |
2003年 | 231篇 |
2002年 | 169篇 |
2001年 | 157篇 |
2000年 | 130篇 |
1999年 | 109篇 |
1998年 | 108篇 |
1997年 | 93篇 |
1996年 | 109篇 |
1995年 | 71篇 |
1994年 | 63篇 |
1993年 | 47篇 |
1992年 | 43篇 |
1991年 | 29篇 |
1990年 | 27篇 |
1989年 | 22篇 |
1988年 | 5篇 |
1987年 | 2篇 |
1986年 | 1篇 |
排序方式: 共有8785条查询结果,搜索用时 15 毫秒
201.
为了解煤胶体对汞的吸附动力学特性,采用沉降法和离心法提取由霍林河采集煤样中的煤胶体(0~2、2~5、5~10 μm),采用批量实验对不同粒径和不同温度下,煤胶体对汞的吸附动力学特性进行了研究。结果表明:煤胶体对汞的吸附反应为吸热反应,以化学吸附为主,其吸附动力学过程可用准二级动力学方程和双室模型很好的描述。煤胶体对汞的平衡吸附量随粒径的减小和温度的升高而逐渐增大,不同粒径煤胶体受温度影响的大小关系为(5~10)μm > (2~5)μm > (0~2)μm。煤胶体对汞的吸附从初始阶段到达到表观平衡,快速吸附均占据优势。在表观平衡时,粒径越大,快速吸附的贡献率越小。煤胶体对汞的吸附反应速率随温度升高和粒径减小而增大。温度越高、粒径越小,快速吸附速率越大;而慢速吸附速率则随温度升高和粒径增大而增大。汞在0~2 μm和2~5 μm煤胶体上的吸附过程,粒内扩散是其主要控速步骤;而对于5~10 μm的煤胶体,膜扩散是主要控速步骤。 相似文献
202.
以“grafting to”法制备的氧化石墨烯/聚酰胺-胺(GO/PAMAMs)作为吸附剂,研究了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附行为,考察了溶液pH值、吸附时间、初始离子浓度及吸附剂用量等因素对吸附过程的影响,探讨了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附机理。研究表明:GO/PAMAMs对Cu(Ⅱ)的吸附最佳pH值是5.0,Cd(Ⅱ)的最佳pH值为5.5;Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附过程符合Lagergren准二级动力学模型,等温吸附过程遵循Langmuir模型;热力学研究表明Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的吸附是自发进行的吸热过程,且属于物理吸附。 相似文献
203.
204.
205.
206.
活性炭吸附室内空气中挥发性有机化合物 总被引:13,自引:0,他引:13
活性炭吸附室内空气中挥发性有机化合物的10%穿透时间与气相浓度及挥发性有机化合物的种类有关,通过对苯、甲苯和丙酮的实验研究,得出了由高浓度估算室内低浓度时炭床10%穿透时间的经验公式tb,1=tb,h(C0,1/C0,h)^a,其中a值是与炭床性能及挥发性有机化合物种类有关的参数,可通过实验确定。 相似文献
207.
208.
209.
为克服湿法制备磁性生物炭颗粒时团聚严重、固液分离困难、热解前需消耗大量能源脱水干化的问题,本研究以市政污泥为原料,通过无溶剂法热解制备了磁性污泥基生物炭(MSBC-2),并利用SEM、FTIR、XPS、VMS和Raman等方法对产物的表面结构与特征进行了表征。基于序批实验,分析了pH、温度、背景离子强度、生物炭投加量对该吸附材料的Pb2+吸附性能的影响,并进行了吸附动力学、吸附等温线及吸附热力学研究。结果表明:MSBC-2的Pb2+去除率随pH及温度的升高而升高,pH>4后去除率基本不变,离子强度对Pb2+去除率基本无影响。MSBC-2对Pb2+的吸附行为符合准二级动力学模型及Langmuir模型,表明吸附过程的限速步骤为化学反应,吸附为单分子层吸附;MSBC-2的反应速率常数k2是未改性生物炭的4.1倍,25 ℃时最大理论吸附容量为113.36 mg·g−1,高于大多数湿法制备的磁性生物炭;该吸附过程非自发、吸热且熵增过程;MSBC-2对Pb2+的吸附机理主要包括表面络合、离子交换和物理吸附。 相似文献
210.