The occurrence of 43 pharmaceuticals belonging to predominant therapeutic classes and their distribution in surface water, suspended solids and sediments has been investigated in the Ebro river basin in the Northeast of Spain. WWTP effluents were found to be a main source of contamination and the spatial distribution was affected by the river flow at the sampling point and corresponding dilution factor, resulting in higher concentrations and higher loads in small tributary rivers than in the Ebro river. The study showed that some compounds are preferentially found bound to suspended solids and not detected in river water. Generally, compounds with basic characteristics (pKa > 7) showed higher tendency to bind to suspended solids. The sediment samples generally presented lower concentrations than suspended solids. 相似文献
Increasing anthropogenic pressure on the largest remaining tracts of old-growth boreal forest in Europe necessitates additional conservation of ecosystems and biodiversity in northeastern European Russia. In a regional network comprising 8 % of the Nenets Autonomous District and 13.5 % of the Komi Republic, 248 areas have varying protected statuses as state nature reserves (zapovedniks), national parks, reserves/sanctuaries (zakazniks), or natural monuments. Due to increased natural resource extraction in this relatively pristine area, designation of additional protected areas is critical for the protection of key ecological sites. The history of ecological preservation in these regions is herein described, and recent recommendations for incorporating additional ecologically representative areas into the regional network are presented. If the protected area network can be expanded, the overall environmental stability in these globally significant ecosystems may remain intact, and can help Russia meet the 2020 Aichi conservation targets, as set forth by the Convention of Biological Diversity. 相似文献
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis. 相似文献
ABSTRACT: The Pittsburgh District, U.S. Army Corps of Engineers, is responsible for operating two multipurpose reservoirs in the 7384 square mile (19198 square kilometer) Monongahela Basin. A third reservoir, presently under construction, will soon be operating. The real-time forecasting of runoff for operational purposes requires simulation of snow accumulation and snowmelt throughout the Basin during the winter season. This article describes capabilities of SNOSIM, a model being developed for performing such simulation. The application of this model as part of a comprehensive system of water control software, and some initial simulation results are presented. 相似文献