排序方式: 共有52条查询结果,搜索用时 15 毫秒
11.
12.
This work explores the feasibility of using chitosan (CS)-sodium alginate (SA) crosslinking gel to reinforce dry water (DW) composites. The stability and fire extinguishing efficiency of the DW powder are investigated. Compared to ordinary DW material, water loss rate of the modified DW composite is decreased, and its pressure resistance and stability are significantly increased. Moreover, it possesses higher fire extinguishing efficiency than conventional dry powder. Fire extinguishing mechanism and gel formation mechanism are proposed. The improvement in stability has great significance for the storage and transportation of DW materials. These results demonstrate the ability to create a fully green and renewable crosslinking gel capable of endowing high stability to DW material. This work provides a novel solution to improve the stability of DW materials, which will have great application prospect in fire suppression of some flammable hazardous chemicals. 相似文献
13.
Ryo?ShojiEmail author Takanori?Miyazaki Takashi?Niinou Mikio?Kato Hiroshi?Ishii 《Journal of Material Cycles and Waste Management》2004,6(2):142-146
We have successfully prepared a bead-type adsorbent from two materials with different adsorption characteristics. Heavy metals were removed by greatly swollen egg shell membrane-conjugated chitosan beads. The egg shell membrane accumulated and removed precious metal ions from a dilute aqueous solution with a high affinity in a short contact time. Experiments suggested that chitosan beads could take up gold ions with great capacity and selectivity by conjugation with egg shell membrane. Under certain conditions, the selective removal of gold and copper in a mixture of gold and copper ions by egg shell membrane-conjugated chitosan beads was 100% and 2%, respectively. Egg shell membrane-conjugated chitosan beads can be seen as a promising material to recover gold in wastewater from various industries, such as electroplating. 相似文献
14.
Agata Szygua Eric Guibal María Ario Palacín Montserrat Ruiz Ana Maria Sastre 《Journal of environmental management》2009,90(10):2979-2986
Chitosan (a biopolymer) is an aminopolysaccharide that can be used for the treatment of colored solutions by coagulation–flocculation (as an alternative to more conventional processes such as sorption). Acid Blue 92 (a sulfonic dye) was selected as a model dye for verifying chitosan's ability to treat textile wastewater. A preliminary experiment demonstrated that chitosan was more efficient at color removal in tap water than in demineralized water, and that a substantially lower concentration of chitosan could be used with tap water. Dye removal reached up to 99% under optimum concentration; i.e., in terms of the acidic solutions and the stoichiometric ratio between the amine groups of the biopolymer and the sulfonic groups in the dye. The flocs were recovered and the dye was efficiently removed using alkaline solutions (0.001–1 M NaOH solutions) and the biopolymer, re-dissolved in acetic acid solution, was reused in a further treatment cycle. 相似文献
15.
16.
The objective of this study was to investigate the effect of different Al species and chitosan (CS) dosages on coagulation performance, floc characteristics (floc sizes, strength and regrowth ability and fractal dimension) and membrane resistance in a coagulation–ultrafiltration hybrid process. Results showed that different Al species combined with humic acid in diverse ways. Ala had better removal efficiency, as determined by UV254 and dissolved organic carbon, which could be further improved by the addition of CS. In addition, the optimal dosage of different Al species was determined to be 4.0 mg/L with the CS concentration of 1.0 mg/L, by orthogonal coagulation experiments. Combining Ala/Alb/Alc with CS resulted in larger flocs, higher recovery, and higher fractal dimension values corresponding to denser flocs; in particular, the floc size at the steady state stage was four times larger than that obtained with Al species coagulants alone. The results of ultrafiltration experiments indicated that the external fouling percentage was significantly higher than that of internal fouling, at around 85% and 15%, respectively. In addition, the total membrane resistance was significantly decreased due to CS addition. 相似文献
17.
18.
武耀锋 《再生资源与循环经济》2014,(7):32-35
研究pH值、温度、反应物比率对生成三元接枝共聚物的影响,三元接枝共聚物接枝率与接枝效率的计算,以及三元接枝共聚物对铜离子的吸附效果.实验与计算结果表明:生成三元接枝共聚物的最佳反应条件为引发剂(NH4)2S2O8用量6 mmol/L,反应温度50℃,壳聚糖(CTS):丙烯酰胺(AM):丙烯酸(AA)=1∶2.7∶0.3,pH值=7,反应时间5h;在相同条件下,三元接枝共聚物对铜离子去除效果比壳聚糖有了明显的改善,对铜离子去除率最高达到90.06%,比壳聚糖对铜离子的去除率高49.72%. 相似文献
19.
壳聚糖对染料的吸附动力学研究 总被引:13,自引:0,他引:13
通过壳聚糖吸附酸性染料普拉蓝RAWL和阳离子蓝染料X-GRRL的试验,研究了壳聚糖对这两种水溶性染料吸附的动力学行为,包括吸附速率K和颗粒内有效扩散系数Di′,同时通过对吸附焓△H的试验计算,初步分析了它们的吸附机理。 相似文献
20.
Chitosan is a natural high molecular polymer made from crab, shrimp and lobster shells. When used as coagulant in water treatment, not like aluminum and synthetic polymers, chitosan has no harmful effect on human health, and the disposal of waste from seafood processing industry can also be solved. In this study the wastewater from the system of cleaning in place (CIP) containing high content of fat and protein was coagulated using chitosan, and the fat and the protein can be recycled. Chitosan is a natural material, the sludge cake from the coagulation after dehydrated could be used directly as feed supplement, therefore not only saving the spent on waste disposal but also recycling useful material. The result shows that the optimal result was reached under the condition of pH 7 with the coagulant dosage of 25 mg/l. The analysis of cost-effective shows that no extra cost to use chitosan as coagulant in the wastewater treatment, and it is an expanded application for chitosan. 相似文献