首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9069篇
  免费   1182篇
  国内免费   5342篇
安全科学   1753篇
废物处理   284篇
环保管理   823篇
综合类   8574篇
基础理论   1827篇
环境理论   2篇
污染及防治   1351篇
评价与监测   427篇
社会与环境   330篇
灾害及防治   222篇
  2024年   50篇
  2023年   400篇
  2022年   565篇
  2021年   629篇
  2020年   624篇
  2019年   631篇
  2018年   507篇
  2017年   464篇
  2016年   541篇
  2015年   627篇
  2014年   533篇
  2013年   976篇
  2012年   979篇
  2011年   1049篇
  2010年   686篇
  2009年   828篇
  2008年   683篇
  2007年   797篇
  2006年   783篇
  2005年   570篇
  2004年   480篇
  2003年   391篇
  2002年   295篇
  2001年   254篇
  2000年   229篇
  1999年   181篇
  1998年   127篇
  1997年   127篇
  1996年   98篇
  1995年   101篇
  1994年   69篇
  1993年   74篇
  1992年   47篇
  1991年   19篇
  1990年   23篇
  1989年   20篇
  1988年   14篇
  1987年   5篇
  1986年   10篇
  1985年   4篇
  1984年   7篇
  1983年   11篇
  1982年   13篇
  1981年   9篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1973年   5篇
  1972年   5篇
  1971年   33篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
501.
利用透射电子显微镜观察分析白腐真菌(黄孢原毛平革菌)在处理染料废水活性艳红X-3B过程中,染料和盐度对黄孢原毛平革菌的细胞结构产生的毒性作用.结果表明:活性艳红X-3B染料对黄孢原毛平革菌产生生物毒性作用,且随着染料浓度的增加,细胞受损伤程度不断加深.加入100 mg/L的染料活性艳红X-3B后,黄孢原毛平革菌菌丝细胞形态发生变化,出现质壁分离现象;染料浓度进一步加大,菌丝细胞超微结构受到损伤逐渐严重.染料废水中的盐度对黄孢原毛平革菌细胞也会造成损伤,且损伤程度随盐度增大而增大.NaCl浓度为3 g/L时,菌丝细胞发生质壁分离;而当NaCl加入量高于8 g/L时,细胞膜受损,线粒体、细胞核呈现空泡化,表现为受到不可逆的损伤.染料和盐双因子对黄孢原毛平革菌细胞的损伤效应表现为其损伤程度与单因子作用一致,且染料的影响作用占主导.  相似文献   
502.
城市垃圾预处理改善焚烧特性的探讨   总被引:3,自引:0,他引:3  
针对目前我国城市垃圾的高水分、低热值的特性,提出了2种改善城市垃圾焚烧特性的有效措施:生物质垃圾源分类和生物干燥.在我国建立生物质垃圾源分类体系,将生物质垃圾源头分类后,剩余垃圾的热值可以提高约50%~120%,已适合直接入炉焚烧,同时分离出来的生物质垃圾也更易于好氧堆肥或厌氧消化.另外一项技术措施是在焚烧前利用生物干燥技术,降低城市垃圾的水分含量,提高入炉垃圾的热值,这种方法主要是利用生物反应热来干燥城市生活垃圾,只需要在垃圾投入焚烧炉前增加一个预处理步骤,不必改变目前的垃圾收运体系,而且进行生物干燥后的垃圾更易于分选其中的可回收物质.  相似文献   
503.
A2/O工艺中的反硝化除磷   总被引:7,自引:2,他引:5  
A2/O工艺是一种最简单的同步脱氮除磷工艺,但由于其系统中固有的基质竞争和污泥龄等矛盾,在实际应用中特别是处理低C/N比污水时脱氮除磷效率较低.反硝化除磷工艺作为近年来颇受关注的污水生物处理新技术.由于在脱氮除磷过程中可以在碳源利用上耦合,可从一定程度上缓解A2/O工艺中的基质竞争矛盾,使得其在处理低C/N比污水时也能实现较高的脱氮除磷效率.就反硝化除磷的技术原理,结合其在A2/O工艺中的最新研究成果及其控制策略,对A2/O工艺中的反硝化除磷的实现、维持及影响因素进行了分析和探讨,并对其发展方向进行了展望.  相似文献   
504.
The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants.  相似文献   
505.
Dissolved gaseous mercury (DGM) and total mercury (TM) concentrations were measured in Juam Reservoir, Korea. DGM concentrations were higher in spring (64+/-13pgL(-1)) and summer (109+/-15pgL(-1)), and lower in fall (20+/-2pgL(-1)) and winter (23+/-6pgL(-1)). In contrast, TM concentrations were higher in fall (3.2+/-0.1ngL(-1)) and winter (3.3+/-0.1ngL(-1)) than in spring (2.3+/-0.1ngL(-1)) and summer (2.2+/-0.4ngL(-1)). DGM concentrations were correlated with water temperature (p<0.0001), ORP (p<0.0001), UV intensity (UV-A: p=0.008; UV-B: p=0.003), and DOC concentration (p=0.0107). DGM concentrations varied diurnally with UV intensity. The average summer DGM (109+/-15pgL(-1)) and TM (2.2+/-0.4ngL(-1)) concentrations in Juam Reservoir were higher than the averages for North American lakes (DGM=38+/-16pgL(-1); TM=1.0+/-1.2ngL(-1)), but lower than levels reported for Baihua Reservoir in China.  相似文献   
506.
An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L−1. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L−1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L−1. This highly effective arsenic removal method is easy to use and inexpensive to implement.  相似文献   
507.
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485 ± 209 ng/m3 and 267 ± 161 ng/m3, respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.  相似文献   
508.
BACKGROUND: The Yangtze Delta is one of the most developed regions in China and includes Shanghai, eight cities in Jiangsu province and eight cities in Zhejiang province. Meat consumption in this region has increased with economic growth, and most of the consumed meat is produced locally. The water quality of surface waters has deteriorated in recent years. An example was the huge blue-green algae bloom in Tai Lake in late May 2007, which affected millions of people's daily drinking water. However, animal husbandry is considered to be one of the main pollution sources. METHODS: Pollutants (NH3-N, total phosphorus (TP), and total nitrogen (TN)) excreted by livestock and poultry, and the resultant COD (chemical oxygen demand) and BOD (biochemical oxygen demand), were estimated using two different methods based on different data sets. RESULTS: The number of livestock and poultry has remained stable in the Yangtze Delta over the four years from 1999 to 2002, with the average number of pigs, cattle, sheep and poultry being 21.1 M, 0.4 M, 7.7 M and 597.6 M, respectively. Pollutants in livestock and poultry excreta estimated by Method I were: 0.12 Mt NH3-N, 0.11 Mt TP and 0.29 Mt TN, resulting in COD and BOD of 1.34 Mt and 1.30 Mt, respectively, while the estimations based on Method II were: 0.18 Mt NH3-N, 0.15 Mt TP and 0.40 Mt TN, resulting in COD and BOD of 1.95 Mt and 1.80 Mt, respectively. DISCUSSION: Pollutants excreted annually by livestock and poultry in the Yangtze Delta are estimated to be: 0.17 Mt NH3-N, 0.16 Mt TP and 0.42 Mt TN, giving rise to a COD of 1.86 Mt and a BOD of 1.72 Mt. Approximately 25% of this pollution was estimated to enter water bodies, which means that the annual pollutant load is 43,700 t NH3-N, 39,400 tTP, 104,600t TN with a COD of 465,000 tand a BOD of 430,100 t. Pollutants from animal husbandry were similar in magnitude to those from industrial wastewater. Pigs produced the most pollution, followed by poultry, cattle and sheep. The pollution load from animal husbandry in the Yangtze Delta is about twice the average level of the whole of China. CONCLUSIONS: Domestic wastewater was the main pollution source in the Yangtze Delta, followed by pollution from raising livestock and poultry and from industrial wastewater. The pollution load in Shanghai and Jiaxing were the greatest, followed by 7 cities of Jiangsu province (except Suzhou) and other cities of Zhejiang province and Suzhou. Pigs and poultry produced about 90% of the total pollutants from animal husbandry. RECOMMENDATIONS AND PERSPECTIVES: The local governments, especially in Shanghai and Jiaxing, should focus their attention on the pollution produced by livestock and poulrry. Controlling pollution from pigs and poultry will have the greatest impact in this region. Control of pollution will be facilitated by the development of large-scale livestock and poultry farming units and a shift away from small scale husbandry.  相似文献   
509.
Background, aim, and scope  In recent years, due to a high persistence, biomagnification in food webs, presence in remote regions, and potential toxicity, perfluorochemicals (PFCs) have generated a considerable interest. The present study was aimed to determine the levels of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and other PFCs in drinking water (tap and bottled) and river water samples from Tarragona Province (Catalonia, Spain). Materials and methods  Municipal drinking (tap) water samples were collected from the four most populated towns in the Tarragona Province, whereas samples of bottled waters were purchased from supermarkets. River water samples were collected from the Ebro (two samples), Cortiella, and Francolí Rivers. After pretreatment, PFC analyses were performed by HPLC-MS. Quantification was done using the internal standard method, with recoveries between 68% and 118%. Results  In tap water, PFOS and PFOA levels ranged between 0.39 and 0.87 ng/L (0.78 and 1.74 pmol/L) and between 0.32 and 6.28 ng/L (0.77 and 15.2 pmol/L), respectively. PFHpA, PFHxS, and PFNA were also other detected PFCs. PFC levels were notably lower in bottled water, where PFOS could not be detected in any sample. Moreover, PFHpA, PFHxS, PFOA, PFNA, PFOS, PFOSA, and PFDA could be detected in the river water samples. PFOS and PFOA concentrations were between <0.24 and 5.88 ng/L (<0.48 and 11.8 pmol/L) and between <0.22 and 24.9 ng/L (<0.53 and 60.1 pmol/L), respectively. Discussion  Assuming a human water consumption of 2 L per day, the daily intake of PFOS and PFOA by the population of the area under evaluation was calculated (0.78–1.74 and 12.6 ng, respectively). It was found that drinking water might be a source of exposure to PFCs as important as the dietary intake of these pollutants. Conclusions  The contribution of drinking water (tap and bottled) to the human daily intake of various PFCs has been compared for the first time with data from dietary intake of these PFCs. It was noted that in certain cases, drinking water can be a source of exposure to PFCs as important as the dietary intake of these pollutants although the current concentrations were similar or lower than those reported in the literature for surface water samples from a number of regions and countries. Recommendations and perspectives  Further studies should be carried out in order to increase the knowledge of the role of drinking water in human exposure to PFCs.  相似文献   
510.
BACKGROUND, AIMS AND SCOPE: Chromium enters into the aquatic environment as a result of effluent discharge from steel works, electroplating, leather tanning industries and chemical industries. As the Cr(VI) is very harmful to living organisms, it should be quickly removed from the environment when it happens to be contaminated. Therefore, the aim of this laboratory research was to develop a rapid, simple and adaptable solvent extraction system to quantitatively remove Cr(VI) from polluted waters. METHODS: Aqueous salt-solutions containing Cr(VI) as CrO4(2-) at ppm level (4-6 ppm) were prepared. Equal volumes (5 ml) of aqueous and organic (2-PrOH) phases were mixed in a 10 ml centrifuge tube for 15 min, centrifuged and separated. Concentrations of Cr(VI), in both the aqueous and organic phases, were determined by atomic absorption spectrometry. The effects of salt and acid concentrations, and phase-contact time on the extraction of Cr(VI) were investigated. In addition, the extraction of Cr(VI) was assessed in the presence of tetramethylammonium chloride (TMAC) in 2-PrOH phase. Effects of some other metals, (Cd(II), Co(II), Cu(II), Ni(II) and Zn(II)), on the extraction of Cr(VI) were also investigated. RESULTS AND DISCUSSION: The Cr(VI) at ppm level was extracted quantitatively by salting-out the homogeneous system of water and 2-propanol(2-PrOH) using chloride salts, namely CaCl2 or NaCl, under acidic chloride media. The extracted chemical species of Cr(VI) was confirmed to be the CrO3Cl-. The ion-pair complex extracted into the organic phase was rationalized as the solvated ion-pair complex of [2-PrOH2+, CrO3Cl-]. The complex was no longer stable. It implied the reaction between extracted species. Studies revealed that salts and acid directly participated in the formation of the above complex. Use of extracting agents (TMAC) didn't show any significant effect on the extraction of Cr(VI) under high salting-out conditions. There is no significant interference effect on the extraction of Cr(VI) by the presence of other metals. The Cr(VI) in the organic phase was back-extracted using an aqueous ammonia solution (1.6 mol dm(-3)) containing 3 mol dm(-3) NaCl. The extraction mechanism of Cr(VI) is also discussed. CONCLUSIONS: Salting-out of homogeneous mixed solvent of 2-propanol can be employed to extract Cr(VI) quantitatively, as an ion-pair of [2-PrOH2+ * CrO3Cl-] solvated by 2-PrOH molecules. Then, the complex becomes 'solvent-like' and is readily separated into the organic phase. The increase of Cl- ion concentration in the aqueous phase favors the extraction. The 2-PrOH, salts and acid play important roles in the extraction process. There is no need to use an extracting agent at a high salting-out condition. RECOMMENDATIONS AND PERSPECTIVES: Chromium(VI) must be quickly removed before it enters into the natural cycle. As the 2-PrOH is water-miscible in any proportion, ion-pairing between 2-PrOH2+ and CrO3Cl- becomes very fast. As a result, Cr(VI) can easily be extracted. Therefore, the method is recommended as a simple, rapid and adaptable method to quickly separate Cr(VI) from aqueous samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号